K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1

A = \(\frac12+\frac16+\frac{1}{12}+\cdots+\)

A = \(\frac{1}{1.1}\) + \(\frac{1}{2.3}\) + ... +

Số hạng thứ 80 của tổng A là: \(\frac{1}{80.81}\)

Tổng của 80 số hạng đầu tiên của dãy số trên là:

A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.\ldots+\frac{1}{80.81}\)

A = \(\frac11-\frac12+\frac12-\frac13+\cdots+\frac{1}{80}-\frac{1}{81}\)

A = \(\frac11\) - \(\frac{1}{81}\)

A = \(\frac{80}{81}\)


20 tháng 1

\(\dfrac{1}{2}=1.2\) (số hạng thứ nhất)

\(\dfrac{1}{6}=2.3\) (số hạng thứ hai)

\(\dfrac{1}{12}=\dfrac{1}{3.4}\) (số hạng thứ ba)

...

\(\dfrac{1}{80.81}\) (số hạng thứ 80)

Tổng 80 số hạng đó:

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{80.81}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{80}-\dfrac{1}{81}\)

\(=1-\dfrac{1}{81}\)

\(=\dfrac{80}{81}\)

 

20 tháng 9 2019

a,Tổng 10 số đầu tiên là.

 1-1/11 = 10/11

b, 1/10200= 1/100.102

=> không là 1số hag cua day vì mẫu là 2 số tự nhiên liên tiếp nhân với nhau ra mẫu

18 tháng 4 2019

A,Tổng 10 số đầu tiên là. 1-1/11 = 10/11 b, 1/10200= 1/100.102 => không là 1số hag cua day vì mẫu là 2 số tự nhiên liên tiếp nhân với nhau ra mẫu

2 tháng 8 2015

a ) tổng 10 số hạng dầu tiên là :

             1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 +  1/90 + 1/110

= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/10.11

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/10 - 1/11

= 1/1 - 1/11

= 10/11 

 

28 tháng 2 2017

phan a la10/11 dung 100%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

26 tháng 8 2017

1)55=4+5+6+7+8+9+10+11

26 tháng 8 2017

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

17 tháng 11 2023

8 = 2 \(\times\) 4

24 = 4 \(\times\) 6

48 = 6 \(\times\) 8

80 = 8 \(\times\) 10

Xét dãy số: 2; 4; 6; 8;...; đây là dãy số cách đều với khoảng cách là:

                 4 - 2 = 2

Số thứ 20 của dãy số trên là: 2 x (20 - 1) + 2 = 40 

Vậy Phân số thứ 20 của dãy số đã cho là: \(\dfrac{1}{40\times42}\) 

Tổng của 20 phân số đầu tiên của dãy số đã cho là:

A = \(\dfrac{1}{8}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{48}\) + \(\dfrac{1}{80}\) +...+ \(\dfrac{1}{1680}\)

A = \(\dfrac{1}{2\times4}\) + \(\dfrac{1}{4\times6}\) + \(\dfrac{1}{6\times8}\) + \(\dfrac{1}{8\times10}\)+...+ \(\dfrac{1}{40\times42}\)

A = \(\dfrac{1}{2}\) \(\times\)(\(\dfrac{2}{2\times4}\) + \(\dfrac{2}{4\times6}\)+\(\dfrac{2}{6\times8}\)+\(\dfrac{2}{8\times10}\)+...+\(\dfrac{2}{40\times42}\))

A = \(\dfrac{1}{2}\) \(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{10}\)+...+ \(\dfrac{1}{40}\) - \(\dfrac{1}{42}\))

A = \(\dfrac{1}{2}\) \(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{42}\))

A = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{40}{42}\)

A = \(\dfrac{5}{21}\)

 

8 tháng 6 2018

a) Quy luật :

Ta có : \(\frac{1}{8}\)\(\frac{1}{2\cdot4}\)

             \(\frac{1}{24}\)\(\frac{1}{4\cdot6}\)

           \(\frac{1}{48}\)\(\frac{1}{6\cdot8}\)

           \(\frac{1}{80}\)\(\frac{1}{8\cdot10}\)

Do đó 2 số tiếp theo sẽ có mẫu lần lượt là 120 ( 10 . 12 ) và 168 ( 12 . 14 )

2 số tiếp theo là : \(\frac{1}{120}\)và \(\frac{1}{168}\)

b) Tổng 6 số hạng đầu của dãy số là :

\(\frac{1}{8}\)\(\frac{1}{24}\)\(\frac{1}{48}\)\(\frac{1}{80}\)\(\frac{1}{120}\)\(\frac{1}{168}\)

\(\frac{1}{2\cdot4}\)\(\frac{1}{4\cdot6}\)\(\frac{1}{6\cdot8}\)\(\frac{1}{8\cdot10}\)\(\frac{1}{10\cdot12}\)\(\frac{1}{12\cdot14}\)

\(\frac{1}{2}\). ( \(\frac{2}{2\cdot4}\)\(\frac{2}{4\cdot6}\)\(\frac{2}{6\cdot8}\)\(\frac{2}{8\cdot10}\)\(\frac{2}{10\cdot12}\)\(\frac{2}{12\cdot14}\))

= 1/2 x ( 1 - 1/4 + 1/4 - 1/6 + 1/6- 1/8 + 1/8 - 1/10 + 1/10 - 1/12 + 1/12 - 1/14 )

= 1/2 x ( 1 - 1/14 )

= 1/2 x 13/14

= 13/28