cho a là số tự nhiên. chứng minh rằng B = 4a(a+2017)(a+2018)(a+4035)+2017^2.2018^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=1\Leftrightarrow a=b\\\dfrac{b}{c}=1\Leftrightarrow b=c\\\dfrac{c}{a}=1\Leftrightarrow c=a\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow A=\dfrac{a^{2017}\cdot a^{2018}}{c^{4035}}=\dfrac{a^{2017}\cdot a^{2018}}{a^{4035}}=\dfrac{a^{4035}}{a^{4035}}=1\)
a, \(\dfrac{2017.2021-4031}{2020+2017.2018}\)
= \(\dfrac{2017\left(2018+3\right)-4031}{2020+2017.2018}\)
= \(\dfrac{2017.2018+2017.3-4031}{2020+2017.2018}\)
= \(\dfrac{2017.2018+2020}{2020+2017.2018}\)
= 1
@Nguyen Thi Ngoc Linh
a: Đặt a=2017
\(A=\sqrt{1+\left(\dfrac{1}{a}+\dfrac{1}{a+2}\right)^2}\)
\(=\sqrt{1+\left(\dfrac{2a+2}{a\left(a+2\right)}\right)^2}\)
\(=\sqrt{1+\dfrac{4a^2+8a+4}{a^2\cdot\left(a+2\right)^2}}=\sqrt{\dfrac{\left(a^2+a\right)^2+4a^2+8a+4}{a^2\left(a+2\right)^2}}\)
\(=\sqrt{\dfrac{\left(a^2+a\right)^2+4\left(a+1\right)^2}{a^2\left(a+2\right)^2}}\)
\(=\dfrac{\sqrt{\left(a^2+a\right)^2+4\left(a+1\right)^2}}{a\left(a+2\right)}\)
\(=\dfrac{\sqrt{\left(2017^2+2017\right)^2+4\cdot2018^2}}{2017\cdot2019}\)
b: Đặt 2017=a
\(B=\sqrt{a^2+a^2\cdot\left(a+1\right)^2+\left(a+1\right)^2}\)
\(=\sqrt{2a^2+2a+1+\left(a^2+a\right)^2}\)
\(=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1\)
\(=2017^2+2017+1=4070307\)
Vì \(\frac{a+2007}{a-2007}=\frac{b+2008}{b-2008}\)
Suy ra: \(\frac{a+2007}{b+2008}=\frac{a-2007}{b-2008}\)
Theo tính chất dãy tỉ số bằng nhau thì:
\(\frac{a+2007}{b+2008}=\frac{a-2007}{b-2008}=\frac{\left(a+2007\right)+\left(a-2007\right)}{\left(b+2008\right)+\left(b-2008\right)}=\frac{\left(a+2007\right)-\left(a-2007\right)}{\left(b+2008\right)-\left(b-2008\right)}\)
Lấy 2 phân số cuối cùng của dãy tỉ số trên và rút gọn ta được:
\(\frac{2a}{2b}=\frac{2.2007}{2.2008}\)
\(\Rightarrow\frac{a}{b}=\frac{2007}{2008}\)
Ta có:
\(\frac{a+2017}{a-2017}=\frac{b+2018}{b-2018}\)
=>\(\frac{a+2017}{b+2018}=\frac{a-2017}{b-2018}\)
=>\(\frac{a}{b}=\frac{2017}{2018}\)
=>\(\frac{a}{2017}=\frac{b}{2018}\)
Vậy nếu \(\frac{a+2017}{a-2017}=\frac{b+2018}{b-2018}\)thì \(\frac{a}{2017}=\frac{b}{2018}\)
Áp dụng BĐT Cosi cho 2018 số:
\(2017.6^{2018}.\sqrt[2017]{m}+\dfrac{\left(2a\right)^{2018}}{m}\ge2018\sqrt[2018]{\left(6^{2018}.\sqrt[2017]{m}\right)^{2017}\dfrac{\left(2a\right)^{2018}}{m}}=2018.2.6^{2017}.a\)
\(\Leftrightarrow\dfrac{\left(2a\right)^{2018}}{m}\ge2018.2.6^{2017}.a-2017.6^{2018}.\sqrt[2017]{m}\)
\(\Leftrightarrow\dfrac{2\left(2a\right)^{2018}}{m}\ge2018.4.6^{2017}.a-2017.2.6^{2018}.\sqrt[2017]{m}\)
Tương tự: \(\dfrac{2\left(2b\right)^{2018}}{n}\ge2018.4.6^{2017}.b-2017.2.6^{2018}.\sqrt[2017]{n}\)
\(\dfrac{3.c^{2018}}{p}\ge2018.3.6^{2017}.c-2017.6^{2018}.3.\sqrt[2017]{p}\)
\(\Rightarrow S\ge2018.6^{2017}\left(4a+4b+3c\right)-2017.6^{2018}\left(2\sqrt[2017]{m}+2\sqrt[2017]{n}+3\sqrt[2017]{p}\right)\)
\(\ge2018.6^{2017}.42-2017.6^{2018}.7=7.6^{2018}>6^{2018}\)
Vậy \(S>6^{2018}\)