1+1/3+1/6+1/10+...+2/x x (x+1)=1 hỗn số 2023/2025
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 x A = 1 - \(\dfrac{1}{2027}\)
\(A=\dfrac{1013}{2027}\)
1. Giải:
Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)
\(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)
\(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)
Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.
⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)
Ta có bảng:
2x+1 | 1 | 3 | 7 | 21 |
x | 0 | 1 | 3 | 10 |
TM | TM | TM | TM |
Vậy xϵ\(\left\{0;1;3;10\right\}.\)
2. Giải:
Do (2x-18).(3x+12)=0.
⇒ 2x-18=0 hoặc 3x+12=0.
⇒ 2x =18 3x =-12.
⇒ x =9 x =-4.
Vậy xϵ\(\left\{-4;9\right\}.\)
3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.
S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.
S= 0 + 0 + ... + 0 + 2025.
⇒S= 2025.
Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:
$(x-y+z)^2\geq 0$
$\sqrt{y^4}\geq 0$
$|1-z^3|\geq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$
Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$
Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$
$\Leftrightarrow y=0; z=1; x=-1$
A = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - 10 - 11 + ... - 2023 + 2024 + 2025
Xét dãy số: 1; 2; 3; 4;..; 2025 là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là: ( 2025 - 1) : 1 + 1 = 2025
Vì 2025 : 4 = 506 dư 1
Nhóm 4 số hạng liên tiếp của A vào nhau thì được A là tổng của 506 nhóm và 2025 khi đó
A =(1-2-3+4)+(5 - 6 - 7 + 8) +...+(2021-2022-2023+2024) + 2025
A = 0 + 0 +...+ 0 + 2025
A = 2025
a
ĐK: \(x\ne5\)
\(\dfrac{x-5}{3}=\dfrac{-12}{5-x}\\ \Leftrightarrow\dfrac{x-5}{3}=\dfrac{12}{x-5}\\ \Leftrightarrow\left(x-5\right)^2=12.3=36\\ \Leftrightarrow\left\{{}\begin{matrix}x-5=6\\x-5=-6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=11\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
b
ĐK: \(x\ne0;x\ne-1\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{x}.\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2023}{4048}\\ \Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2023}{4048}=\dfrac{1}{4048}\\ \Leftrightarrow4048=x+1\\ \Leftrightarrow x=4047\left(tm\right)\)
a: =>(x-5)/3=12/(x-5)
=>(x-5)^2=36
=>x-5=6 hoặc x-5=-6
=>x=11 hoặc x=-1
b: =>\(2\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2023}{2024}\)
=>1/2-1/3+1/3-1/4+...+1/x-1/x+1=2023/4048
=>1/2-1/x+1=2023/4048
=>1/(x+1)=1/4048
=>x+1=4048
=>x=4047
a) 2/3 : 3/5 × 5/7 : 2/3
= 2/3 × 5/3 × 5/7 × 3/2
= 25/21
b) 1 1/2 × 1 1/3 × 1 1/18 × 1 1/15 × 1 1/24 × 1 1/35
= 3/2 × 4/3 × 19/18 × 16/15 × 25/24 × 36/35
= 2 × 152/35 × 15/14
= 304/35 × 15/14
= 152/7
`2x-15=-25`
`2x=-10`
`x=-5`
___________
`3/5<x/10<4/5`
`3/5=(3xx10)/(5xx10)=30/50`
`x/10=(5x)/(10xx5)=(5x)/50`
`4/5=(4xx10)/(5xx10)=40/50`
`=>30/50<(5x)/50<40/50`
`=>30<5x<40`
`=>x=7`
a: \(\Leftrightarrow\left(\dfrac{13}{4}:x\right)\cdot\left(-\dfrac{5}{4}\right)=\dfrac{-10}{6}-\dfrac{5}{6}=\dfrac{-15}{6}=\dfrac{-5}{2}\)
\(\Leftrightarrow\dfrac{13}{4}:x=\dfrac{5}{2}\cdot\dfrac{5}{4}=\dfrac{25}{8}\)
hay \(x=\dfrac{13}{4}:\dfrac{25}{8}=\dfrac{13}{4}\cdot\dfrac{8}{25}=\dfrac{26}{25}\)
b: \(\Leftrightarrow\dfrac{3}{4}:x=\dfrac{11}{36}-\dfrac{1}{4}=\dfrac{2}{36}=\dfrac{1}{18}\)
=>\(x=\dfrac{3}{4}:\dfrac{1}{18}=\dfrac{54}{4}=\dfrac{27}{2}\)
c: \(\Leftrightarrow\left(-\dfrac{6}{5}+x\right):\left(-3.6\right)=-\dfrac{7}{4}+\dfrac{1}{4}\cdot8=\dfrac{1}{4}\)
=>x-6/5=-9/10
=>x=3/10
\(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>x=1 và y=-1
\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)
Đặt A = 1 + 1 3 + 1 6 + 1 10 + ⋯ + 2 x ( x + 1 ) = 2023 2025 A=1+ 3 1 + 6 1 + 10 1 +⋯+ x(x+1) 2 = 2025 2023 A 2 = 1 2 + 1 6 + 1 20 + ⋯ + 1 x ( x + 1 ) 2 A = 2 1 + 6 1 + 20 1 +⋯+ x(x+1) 1 A 2 = 1 1 × 2 + 1 2 × 3 + 1 3 × 4 + ⋯ + 1 x × ( x + 1 ) 2 A = 1×2 1 + 2×3 1 + 3×4 1 +⋯+ x×(x+1) 1 A 2 = 1 − 1 2 + 1 2 − 1 3 + 1 3 − 1 4 + ⋯ + 1 x − 1 x + 1 2 A =1− 2 1 + 2 1 − 3 1 + 3 1 − 4 1 +⋯+ x 1 − x+1 1 A 2 = 1 − 1 x + 1 2 A =1− x+1 1 A = 2 − 2 x + 1 = 2023 2025 A=2− x+1 2 = 2025 2023 A = 2 x + 1 = 2 − 2023 2025 A= x+1 2 =2− 2025 2023 A = 2 x + 1 = 2027 2025 A= x+1 2 = 2025 2027 ↔ 2 × 2025 = 2027 × ( x + 1 ) ↔2×2025=2027×(x+1) x + 1 = 5050 2027 x+1= 2027 5050 x = 5050 2027 − 1 = 3023 2027 x= 2027 5050 −1= 2027 3023