Tìm x, y biết
\(\left\vert x+2023y\right\vert+\left(y+1\right)^{2024}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-xy-2022x+2023y-2024=0\\\Leftrightarrow (x^2-2023x)-(xy-2023y)+(x-2023)-1=0\\\Leftrightarrow x(x-2023)-y(x-2023)+(x-2023)=1\\\Leftrightarrow(x-2023)(x-y+1)=1\)
Vì \(x,y\) nguyên nên \(x-2023;x-y+1\) có giá trị nguyên
mà \(\left(x-2023\right)\left(x-y+1\right)=1\)
nên ta có các trường hợp xảy ra là:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2023=1\\x-y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-2023=-1\\x-y+1=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=2024\left(tm\right)\\\left\{{}\begin{matrix}x=2022\\y=2024\end{matrix}\right.\left(tm\right)\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2024;2024\right);\left(2022;2024\right)\).
\(\text{#}Toru\)
ĐKXĐ: y>=0
\(\left(x+1\right)^{2024}>=0\forall x\)
\(\left(\sqrt{y-1}\right)^{2023}>=0\forall y\) thỏa mãn ĐKXĐ
=>\(\left(x+1\right)^{2024}+\left(\sqrt{y-1}\right)^{2023}>=0\forall x,y\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
(y - 1)2024 + |\(x+y-1\)| = 0
Vì (y - 1)2024 ≥ 0 ∀ y; |\(x+y-1\)| ≥ 0 ∀ \(x;y\)
(y - 1)2024 + |\(x+y-1\)| = 0 khi và chỉ khi
y - 1 = 0 và \(x+y-1\) = 0
y - 1 = 0 Suy ra y = 1. thay y = 1 vào biểu thức \(x+y-1=0\) ta có:
\(x+1-1=0\) ⇒ \(x=0-1+1\) \(x=0\)
Vậy \(x=0;y=1\) thay vào biểu thức A= \(x^{2024}\) + y2024 ta được:
A = 02024 + 12024 = 0 + 1 = 1
a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\)
8 .x + 1 . x = 990
x . [ 8 +1 ] = 990
x . 9 = 990
x = 990 : 9
x = 110
a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)
=>\(8\cdot x+1\cdot x=3305+1\)
=>\(9x=3306\)
=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)
b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)
=>\(2^x\left(1+2+4+8\right)=480\)
=>\(2^x\cdot15=480\)
=>\(2^x=32\)
=>\(2^x=2^5\)
=>x+5
\(\left|x+2023y\right|>=0\forall x,y\)
\(\left(y+1\right)^{2024}>=0\forall y\)
Do đó: \(\left|x+2023y\right|+\left(y+1\right)^{2024}>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+2023y=0\\y+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-1\\x=-2023y=-2023\cdot\left(-1\right)=2023\end{matrix}\right.\)