tìm số nguyên n để n^2+2n-1 chia hết n+1
giúp iemmm vs ahhh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$A=(n-1)(2n-3)-2n(n-3)-4n$
$=2n^2-5n+3-(2n^2-6n)-4n$
$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$
Ta có đpcm.
Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$
$=(2n-3)(n+2+n)+n(n+10)$
$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$
$=5n^2+8n-6=5n(n+3)-7(n+3)+15$
$=(n+3)(5n-7)+15$
Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$
$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$
$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$
2n^2+2n-1 =n(2n+1) + n-1 chia hết chi 2n+1 nếu và chỉ nếu n-1 chia hết cho 2n+1
suy ra n=1
X = một số tự nhiên khác 0
X có giá trị bằng 1 số
Tóm lại X = X không gì có thể chối cãi được.
a: Ta có: \(2n+1⋮n+2\)
\(\Leftrightarrow2n+4-3⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-1;-3;1;-5\right\}\)
b: Để B là số nguyên thì \(n+3⋮n-2\)
\(\Leftrightarrow n-2+5⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{3;1;7;-3\right\}\)
c: Để C là số nguyên thì \(3n+7⋮n-1\)
\(\Leftrightarrow3n-3+10⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
=>(n2+3n)+(3n+9)+2 chia hết cho n+3
=>n(n+3)+3(n+3)+2 chia hết cho n+3
=>(n+3)(n+3)+2 chia hết cho n+3
Mà (n+3)(n+3) chia hết cho n+3
=>2 chia hết cho n+3
=> n+3 thuộc Ư(2)={1;2;-1;-2}
=>n thuộc {-2;-1;-4;-5}
Để A nguyên
=>n2-3n+1 chia hết cho n+1
=>(n2-1)-(3n+3)+1+1-3 chia hết cho n+1
=>(n-1)(n+1)-3(n+1)-1 chia hết cho n+1
Mà (n-1)(n+1) và 3(n+1) chia hết cho n+1
=>1 chia hết cho n+1
=>n+1 thuộc Ư(1)={1;-1}
=>n thuộc {0;-2}
\(n^2+2n-1⋮n+1\)
=>\(n^2+n+n+1-2⋮n+1\)
=>\(-2⋮n+1\)
=>\(n+1\in\left\{1;-1;2;-2\right\}\)
=>\(n\in\left\{0;-2;1;-3\right\}\)
Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng. Cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
(n\(^2\) + 2n - 1) ⋮ (n + 1)
(n\(^2\) + n + n + 1 - 2) ⋮ (n + 1)
[(n\(^2\) + n) + (n + 1) - 2] ⋮ (n + 1)
[n(n + 1) + (n + 1) - 2] ⋮ (n + 1)
2 ⋮ (n + 1)
(n + 1) ∈ Ư(2) = {-2; -1; 1; 2}
Lập bảng ta có:
n + 1
-2
-1
1
2
n
-3
-2
0
1
n ϵ
tm
tm
tm
tm
Theo bảng trên ta có: n ϵ {-3; -2; 0; 1}
Vậy n ∈ {-3; -2; 0; 1}