a,B(x)=4-x^2
b,D(x)=x^2+2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=-x^2-4x-2\)
\(=-x^2-4x-4+2\)
\(=-\left(x^2+4x+4\right)+2\)
\(=-\left(x+2\right)^2+2< =2\forall x\)
Dấu '=' xảy ra khi x+2=0
=>x=-2
b: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}< =\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x+\dfrac{3}{4}=0\)
=>\(x=-\dfrac{3}{4}\)
c: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-x^2-2x-1+9\)
\(=-\left(x^2+2x+1\right)+9\)
\(=-\left(x+1\right)^2+9< =9\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
d: \(D=-8x^2+4xy-y^2+3\)
\(=-8\left(x^2-\dfrac{1}{2}xy\right)-y^2+3\)
\(=-8\left(x^2-2\cdot x\cdot\dfrac{1}{4}y+\dfrac{1}{16}y^2\right)+\dfrac{1}{2}y^2-y^2+3\)
\(=-8\left(x-\dfrac{1}{4}y\right)^2-y^2+3< =3\forall x,y\)
Dấu '=' xảy ra khi y=0 và x-1/4y=0
=>y=0 và x=0
e: \(49-x^2-2xy-y^2\)
\(=49-\left(x+y\right)^2\)
\(=\left(7-x-y\right)\left(7+x+y\right)\)
d: \(16x^2-24xy+9y^2=\left(4x-3y\right)^2\)
Thật ra cách làm dạng bài này cũng gần giống như bài tìm gtnn bạn vừa hỏi, chỉ khác ở chỗ đặt dấu âm ra ngoài để tìm được gtln thôi.
A = (x - 1)(x + 3) - (x - 2)(5x - 4)
A = x2 + 2x - 3 - 5x2 + 14x - 8
A = -4x2 + 16x - 11
B = (3a - 2b)(9a2 + 6ab - 4b2)
B = 27a3 + 18a2b - 12ab2 - 18a2b - 12ab2 + 8b3
B = 27a3 -24ab2 + 8b3
C = (x - 1)(x + 1) - (2x - 3)(4 - 5x)
C = x2 - 1 - 8x + 10x + 12 - 15x
C = x2 - 13x + 11
Bài 12:
a) \(\left(\dfrac{1}{2}x+4\right)^2\)
\(=\left(\dfrac{1}{2}x\right)^2+2\cdot\dfrac{1}{2}x\cdot4+4^2\)
\(=\dfrac{1}{4}x^2+4x+16\)
b) \(\left(7x-5y\right)^2\)
\(=\left(7x\right)^2-2\cdot7x\cdot5y+\left(5y\right)^2\)
\(=49x^2-70xy+25y^2\)
c) \(\left(6x^2+y^2\right)\left(y^2-6x^2\right)\)
\(=\left(y^2+6x^2\right)\left(y^2-6x^2\right)\)
\(=y^4-36x^4\)
d) \(\left(x+2y\right)^2\)
\(=x^2+2\cdot x\cdot2y+\left(2y\right)^2\)
\(=x^2+4xy+4y^2\)
e) \(\left(x-3y\right)\left(x+3y\right)\)
\(=x^2-\left(3y\right)^2\)
\(=x^2-9y^2\)
f) \(\left(5-x\right)^2\)
\(=5^2-2\cdot5\cdot x+x^2\)
\(=25-10x+x^2\)
`@` `\text {Ans}`
`\downarrow`
`a,`
`(2x - 3)^2`
`= 4x^2 - 12x + 9`
`b,`
`(x + 1)^2`
`= x^2 + 2x + 1`
`c,`
`(2x + 5)(2x - 5)`
`= 4x^2 - 25`
`d,`
`(a + b - c)(a - b + c)`
`= a^2 - b^2 + bc - c^2 + cb`
`e,`
\((x + 1)^2 - 10(x + 1) + 25\)
`= x^2 + 2x + 1 - 10x - 10 + 25`
`= x^2 - 8x +16`
`@` `\text {Kaizuu lv uuu}`
`@` CT:
Bình phương của `1` tổng: `(A + B)^2 = A^2 + 2AB + B^2`
Bình phương của `1` hiệu: `(A - B)^2 = A^2 - 2AB + B^2`
`A^2 - B^2 = (A-B)(A+B)`
a) Cho B(x) = 0
4 - x² = 0
x² = 4
x = -2 hoặc x = 2
Vậy nghiệm của B(x) là x = -2; x = 2
Tính j vậy ghi rõ hơn đi cậu