K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC và ΔPNM có

\(\dfrac{AB}{PN}=\dfrac{BC}{NM}=\dfrac{AC}{PM}\left(\dfrac{3}{4,5}=\dfrac{6}{9}=\dfrac{5}{7,5}=\dfrac{2}{3}\right)\)

=>ΔABC~ΔPNM

12 tháng 9 2019

Ba cạnh ΔABC tương ứng tỉ lệ với ba cạnh ΔDFE

Để học tốt Toán 8 | Giải toán lớp 8

⇒ ΔABC ∼ ΔDFE

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Xét cặp tam giác thứ nhất: Hình a và Hình c.

Ta có: \(\frac{3}{9} = \frac{1}{3};\frac{7}{{21}} = \frac{1}{3};\frac{{8\frac{1}{3}}}{{25}} = \frac{1}{3}\).

Do đó, tam giác ở Hình a và Hình c đồng dạng với nhau.

Xét cặp tam giác thứ hai: Hình b và Hình d.

Ta có: \(\frac{7}{{14}} = \frac{1}{2};\frac{7}{{14}} = \frac{1}{2};\frac{3}{6} = \frac{1}{2}\).

Do đó, tam giác ở Hình b và Hình d đồng dạng với nhau.

11 tháng 12 2021

Câu 6:

\(\left\{{}\begin{matrix}\widehat{ACB}\text{ chung}\\\widehat{CKB}=\widehat{CHA}=90^0\end{matrix}\right.\Rightarrow\Delta CHA\sim\Delta CKB\left(g.g\right)\\ \left\{{}\begin{matrix}\widehat{ACB}\text{ chung}\\\widehat{AHC}=\widehat{DBC}=90^0\end{matrix}\right.\Rightarrow\Delta CHA\sim\Delta CBD\left(g.g\right)\\ \left\{{}\begin{matrix}\widehat{ACB}\text{ chung}\\\widehat{CKB}=\widehat{DBA}=90^0\end{matrix}\right.\Rightarrow\Delta CKB\sim\Delta CBD\left(g.g\right)\\ \Delta CHA\sim\Delta CKB\Rightarrow\dfrac{CH}{CK}=\dfrac{CA}{CB}\Rightarrow\Delta CKH\sim\Delta CBA\left(c.g.c\right)\)

11 tháng 12 2021

6 ADB và ACB

7 AE và BC , AB và EC 

19 tháng 9 2018

Trong hình bên có 3 cặp tam giác đồng dạng là BHA và BAC; CHA và CAB; HAB và HCA.

27 tháng 1 2024

Ta có:

AC/BC = 3/4,5 = 2/3

DE/EF = 2/3

⇒ AC/BC = DE/EF

∆ABC và ∆DFE có:

AC/BC = DE/EF = 2/3

∠BAC = ∠EDF = 90⁰

⇒ ∆ABC ∽ ∆DFE (cạnh huyền - cạnh góc vuông)

HQ
Hà Quang Minh
Giáo viên
28 tháng 1 2024

Tam giác ABC và tam giác DEF có:

\( \widehat A = \widehat D = 90^0 \)

\( \frac {AC}{DE} = \frac {BC}{EF} = \frac {3}{2} \)

\( \Rightarrow \Delta ABC \backsim \Delta DFE (ch - cgv) \)

5 tháng 12 2017

+ΔDEF vuông tại D và ΔD'E'F' vuông tại D’ có:

Để học tốt Toán 8 | Giải toán lớp 8

⇒ ΔDEF ∼ ΔD'E'F' (hai cạnh góc vuông)

*)Áp dụng định lí py ta go vào tam giác A’B’C’ vuông tại A’ có:

A’C’2 + A’B’2 = B’C’2

=> A’C’2 + 22 = 52

Suy ra: A’C’2 = 25 – 4 = 21 nên Để học tốt Toán 8 | Giải toán lớp 8

*)Áp dụng định lí py ta go vào tam giác ABC vuông tại A có:

AB2 + AC2 = BC2

Thay số: 42 + AC2 = 102

Suy ra: AC2 = 100 – 16 = 84 nên

Để học tốt Toán 8 | Giải toán lớp 8

Do đó, ∆ A’B’C’ đồng dạng với tam giác ABC ( trường hợp 2).

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

- Xét Hình 16a

Ta có: \(\frac{{DE}}{{AB}} = \frac{6}{{12}} = \frac{1}{2};\frac{{DF}}{{AC}} = \frac{9}{{18}} = \frac{1}{2}\)

Xét tam giác \(DEF\) và tam giác \(ABC\) ta có:

\(\frac{{DE}}{{AB}} = \frac{{DF}}{{AC}} = \frac{1}{2}\)

\(\widehat {BAC} = \widehat {EDF} = 120^\circ \)

Do đó, \(\Delta DEF\backsim\Delta ABC\) (c.g.g)

- Xét Hình 16b

Ta có: \(\frac{{CE}}{{NP}} = \frac{4}{8} = \frac{1}{2};\frac{{DE}}{{MP}} = \frac{5}{{10}} = \frac{1}{2}\)

Tuy nhiên, quan sát hình vẽ ta có thể thấy góc tạo bởi cạnh \(MP;NP\) là \(\widehat P\) và góc tạo bởi cạnh \(DE;CE\) là góc \(\widehat E\).

Ta thấy hai góc này không bằng nhau nên chúng không đồng dạng.

30 tháng 9 2018

a) ΔABC Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔHBA vì Â = Ĥ = 90º, B̂ chung

ΔABC Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔHAC vì Â = Ĥ = 90º, Ĉ chung

ΔHBA Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔHAC vì cùng đồng dạng với ΔABC.

b) + ΔABC vuông tại A

⇒ BC2 = AB2 + AC2

(Theo định lý Pytago)

Giải bài 49 trang 84 SGK Toán 8 Tập 2 | Giải toán lớp 8

Xét ΔPED và ΔPMN có

\(\dfrac{PE}{PM}=\dfrac{PD}{PN}=\dfrac{1}{2}\)

\(\widehat{P}\) chung

Do đó: ΔPED~ΔPMN

=>\(k=\dfrac{PE}{PM}=\dfrac{1}{2}\)