Từ điểm M ở ngoài (O;R) kẻ 2 tiếp tuyến MA,MB với đường tròn (A,B là các tiếp điểm). Gọi H là giáo điểm OM và AB . a) Chứng minh OM vuôg góc với AB , từ đó tính tích OH.OM theo R b) Kẻ đường kính AD của (O) . Gọi E là hình chiếu của B lên AD , N là giao điểm của MD và BE . Chứng minh N là trung điểm của BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.
- Hok tốt !
^_^
c: Xét (O) có
M,O,N thẳng hàng
=>MN là đường kính của (O)
OA là đường trung trực của BC(cmt)
=>OA\(\perp\)BC tại H và H là trung điểm của BC
\(\widehat{HCM}+\widehat{HMC}=90^0\)(ΔHMC vuông tại H)
\(\widehat{ACM}+\widehat{OCM}=\widehat{OCA}=90^0\)
mà \(\widehat{OCM}=\widehat{HMC}\)(ΔOMC cân tại O)
nên \(\widehat{HCM}=\widehat{ACM}\)
=>CM là phân giác của góc ACB(5)
Xét (O) có
ΔNCM nội tiếp
NM là đường kính
Do đó: ΔNCM vuông tại C
=>CM\(\perp\)CN(6)
Từ (5),(6) suy ra CN là phân giác góc ngoài tại đỉnh C của ΔACH
Xét ΔACH có CN là phân giác góc ngoài tại đỉnh C
nên \(\dfrac{CA}{CH}=\dfrac{NA}{NH}\left(7\right)\)
Xét ΔACH có CM là phân giác góc trong tại đỉnh C
nên \(\dfrac{CA}{CH}=\dfrac{MA}{MH}\left(8\right)\)
Từ (7) và (8) suy ra \(\dfrac{NA}{NH}=\dfrac{MA}{MH}\)
=>\(NA\cdot MH=NH\cdot MA\)
Xét tứ giác MIOK có
\(\widehat{MIO}+\widehat{MKO}=90^0+90^0=180^0\)
=>MIOK là tứ giác nội tiếp
=>M,I,O,K cùng thuộc một đường tròn
lấy A là trung điểm của OM,xét tam giác OMI có:
A là trung điểm của OM
O,M,I thuộc 1 đường tròn. (1)
Xét tam giác OMK có A là trung điểm của OM
O,M,K thuộc 1 đường tròn (2)
từ (1) và (2) suy ra 4 điểm M,I,O,K cùng thuộc 1 đường tròn
Xin lỗi bạn!
Mk mới học lớp 8 thôi ak!
Chúc bạn có câu trả lời sớm nha!
Kb nhá ^_^
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>ΔABC cân tại A
b: AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại trung điểm của BC
=>AO\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=OB\cdot OB=OB\cdot OC\)
c: Xét (O) có
M,O,N thẳng hàng
=>MN là đường kính của (O)
OA là đường trung trực của BC(cmt)
=>OA\(\perp\)BC tại H và H là trung điểm của BC
\(\widehat{HCM}+\widehat{HMC}=90^0\)(ΔHMC vuông tại H)
\(\widehat{ACM}+\widehat{OCM}=\widehat{OCA}=90^0\)
mà \(\widehat{OCM}=\widehat{HMC}\)(ΔOMC cân tại O)
nên \(\widehat{HCM}=\widehat{ACM}\)
=>CM là phân giác của góc ACB(5)
Xét (O) có
ΔNCM nội tiếp
NM là đường kính
Do đó: ΔNCM vuông tại C
=>CM\(\perp\)CN(6)
Từ (5),(6) suy ra CN là phân giác góc ngoài tại đỉnh C của ΔACH
Xét ΔACH có CN là phân giác góc ngoài tại đỉnh C
nên \(\dfrac{CA}{CH}=\dfrac{NA}{NH}\left(7\right)\)
Xét ΔACH có CM là phân giác góc trong tại đỉnh C
nên \(\dfrac{CA}{CH}=\dfrac{MA}{MH}\left(8\right)\)
Từ (7) và (8) suy ra \(\dfrac{NA}{NH}=\dfrac{MA}{MH}\)
=>\(NA\cdot MH=NH\cdot MA\)
B A M K O H I h d
Gọi H là hình chiếu của O đến đường thẳng d. Khi đó : OH = h không đổi
dễ chứng minh OM \(\perp AB\)tại K
gọi giao điểm của OH với AB là I
Ta có : \(\Delta OKI~\Delta OHM\left(g.g\right)\Rightarrow\frac{OK}{OH}=\frac{OI}{OM}\Rightarrow OK.OM=OI.OH\)
Áp dụng hệ thức lượng, ta có :
\(OB^2=OK.OM=OH.OI\Rightarrow OI=\frac{OB^2}{OH}=\frac{R^2}{h}\)không đổi ( R là bán kính đường tròn (O) )
vậy AB đi qua điểm I cố định
Lời giải:
Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$
$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$
Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.
$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)
Mặt khác:
Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.
$\Rightarrow \widehat{MKO}=90^0$
Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.
$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)
Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.