K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1

75.50 + 25.(-27) - 23.25

= 75.50 - 25.(27+ 23)

= 75.50 - 25.50

= 50.(75 - 25)

= 50.50

= 2500

2 tháng 1

Để giải biểu thức 75.50+25⋅(−27)−23.2575.50+25⋅(−27)−23.25, ta làm theo các bước sau:

  1. Tính 25⋅(−27)25⋅(−27):
    25⋅(−27)=−67525⋅(−27)=−675
  2. Thay vào biểu thức ban đầu:
    75.50+(−675)−23.2575.50+(−675)−23.25
  3. Cộng các số lại:
    • 75.50−675=−599.5075.50−675=−599.50
    • −599.50−23.25=−622.75−599.50−23.25=−622.75

Vậy kết quả của biểu thức là:

−622.75−622.75
10 tháng 7 2017

a)100

b)10000

c)5476

d)2499

10 tháng 7 2017

công thức thứ 6,7

17 tháng 3 2017

A=\(\dfrac{2}{1.3}-\dfrac{2}{3.5}-\dfrac{2}{5.7}-.....-\dfrac{2}{23.25}-\dfrac{1}{27}\)

A=\(\dfrac{2}{3}-\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{23.25}\right)-\dfrac{1}{27}\)

A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{23}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)

A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)

A=\(\dfrac{2}{3}-\dfrac{22}{75}-\dfrac{1}{27}\)

A=\(\dfrac{227}{675}\)

10 tháng 6 2023

(a+\(\dfrac{1}{1.3}\))+(a+\(\dfrac{1}{3.5}\))+(a+\(\dfrac{1}{5.7}\))+..+(a+\(\dfrac{1}{23.25}\))=11.a+(\(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\))

(a+a+..+a)+(\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)) = 11.a+ \(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\))

Đặt A =(a+a+..+a) + \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)

Xét dãy số 1; 3; 5;...;25 Dãy số trên là dãy số cách đều với khoảng cách là: 3-1 = 2

Dãy số trên có số số hạng là: (25 - 1): 2 + 1  = 13

Vậy A = a\(\times\)13 + \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)

A = a\(\times\)13 + \(\dfrac{1}{2}\) \(\times\)(\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+...+\(\dfrac{2}{23.25}\))

A = a \(\times\) 13 + \(\dfrac{1}{2}\times\)\(\dfrac{1}{1}-\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)\(\dfrac{1}{7}\)+...+\(\dfrac{1}{23}\) - \(\dfrac{1}{25}\))

A = a\(\times\)13 + \(\dfrac{1}{2}\) \(\times\) \(\dfrac{24}{25}\)

A = a\(\times\)13 + \(\dfrac{12}{25}\) (1)

Đặt B =    \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\)\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\)

B\(\times\)3 =1 + \(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)

B\(\times\)3 - B = 1 - \(\dfrac{1}{243}\) = \(\dfrac{242}{243}\)

2B = \(\dfrac{242}{243}\)

B = \(\dfrac{242}{243}\): 2

B = \(\dfrac{121}{243}\)

11a + B = 11a + \(\dfrac{121}{243}\) (2)

Từ (1) và(2) ta có:

a\(\times\)13  + \(\dfrac{12}{25}\) = 11\(\times\) a + \(\dfrac{121}{143}\)

\(\times\) 13 + \(\dfrac{12}{25}\) - 11 \(\times\)a = \(\dfrac{121}{143}\) 

\(a\times\)(13 - 11) + \(\dfrac{12}{25}\) = \(\dfrac{121}{143}\)

\(\times\) 2 + \(\dfrac{12}{25}\) = \(\dfrac{121}{243}\)

\(\times\) 2 = \(\dfrac{121}{243}\) - \(\dfrac{12}{25}\)

\(\times\) 2 = \(\dfrac{109}{6075}\)

a = \(\dfrac{109}{6075}\): 2

a = \(\dfrac{109}{12150}\)

 

16 tháng 3 2017

\(A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{1}{27}\)

\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{1}{27}\)

\(=-\left(1-\frac{1}{27}\right)-\frac{1}{27}\)

\(=-1+\frac{1}{27}-\frac{1}{27}\)

\(=-1\)

16 tháng 3 2017

1/2015

15 tháng 3 2017

\(A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{1}{27}\)

   \(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{1}{27}\)

    \(=-\left(1-\frac{1}{27}\right)-\frac{1}{27}\)

    \(=-1+\frac{1}{27}-\frac{1}{27}\)

     \(=-1\)

19 tháng 3 2017

sao làm như vậy được??? 2/19.21 và 2/23.25 bn k làm được như thế đâu vì nó k cùng quy luật với các ps kia

14 tháng 12 2023

a) 23.25 + 75.23 - 1300

= 23.(25 + 75) - 1300

= 23.100 - 1300

= 2300 - 1300

= 1000

b) 36 : 3² - 5.2²

= 36 : 9 - 5.4

= 4 - 20

= -16

c) 183 + 80 : [20 - 4.(5² - 24)]

= 183 + 80 : [20 - 4.(25 - 24)]

= 183 + 80 : (20 - 4.1)

= 183 + 80 : 16

= 183 + 5

= 188

d) (-125) - [148 + 5.(-25)]

= -125 - (148 - 125)

= -125 - 148 + 125

= (-125 + 125) - 148

= 0 - 148

= -148

14 tháng 12 2023

a) 23.25 + 75.23 - 1300

= 23. (25+75) - 1300

= 23.100 - 1300

= 2300 - 1300 = 1000

b) 36 : 32 - 5 . 22

= 36: 9 - 5.4

= 4 - 20 = -16

c) 183 + 80 : [ 20 - 4 ( 52 - 24 ) ]

= 183 + 80: [20 - 4.(25-24)]

= 183 + 80 : [20 - 4.1)]

= 183 + 80: [20 - 4]

= 183 + 80:16

= 183 + 5 = 188

d) (-125) - [148 + 5 . (-25) ]

= -125 - 148 + 125

= (125 - 125) - 148

= 0 - 148 = -148

18 tháng 3 2017

-1

18 tháng 3 2017

Là -1.Đúng 100%

30 tháng 7 2020

\(\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+...+\left(a+\frac{1}{23.25}\right)=11a+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

\(\Rightarrow12a+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11a+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)\)(1)

Ta có \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)=\frac{1}{2}\left(1-\frac{1}{25}\right)=\frac{1}{2}.\frac{24}{25}=\frac{12}{25}\)

Lại có \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}=\frac{3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)}{2}\)

\(=\frac{1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}-\frac{1}{3^5}}{2}=\frac{1-\frac{1}{3^5}}{2}=\frac{1}{2}-\frac{1}{3^5.2}\)

Khi đó (1) <=> \(12a-\frac{12}{25}=11a+\frac{1}{2}-\frac{1}{3^5.2}\)

=> \(a=\frac{12}{25}+\frac{1}{2}-\frac{1}{3^5.2}=\frac{49}{50}-\frac{1}{3^5.2}=\frac{49}{50}-\frac{1}{486}=\frac{23764}{24300}\)

30 tháng 7 2020

Gọi \(A=\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+\left(a+\frac{1}{5.7}\right)+...+\left(a+\frac{1}{23.25}\right)\)

\(\Rightarrow A=12a+\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{23.25}\right)\)

\(\Rightarrow A=12a+\left[\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{23.25}\right)\right]\)

\(\Rightarrow A=12a+\left[\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)\right]\)

\(\Rightarrow A=12a+\left[\frac{1}{2}\left(1-\frac{1}{25}\right)\right]\)

\(\Rightarrow A=12a+\left(\frac{1}{2}.\frac{24}{25}\right)\)

\(\Rightarrow A=12a+\frac{12}{25}\)

Gọi \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\Rightarrow B=\frac{1}{1.3}+\frac{1}{3.3}+\frac{1}{9.3}+\frac{1}{27.3}+\frac{1}{81.3}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)

\(\Rightarrow3B-B=1-\frac{1}{243}\)

\(\Rightarrow2B=\frac{242}{243}\)

\(\Rightarrow B=\frac{121}{243}\)

\(\Rightarrow A=11a+B\)

\(\Rightarrow12a+\frac{12}{25}=11a+\frac{121}{243}\)

\(\Leftrightarrow12a-11a=\frac{121}{243}-\frac{12}{25}\)

\(\Leftrightarrow a=\frac{109}{6075}\)