Cho A(2:1-3), B(1;-2;-1),C(-2;1;2)
Gọi M là điểm trên trục Ox, giá trị độ dài vecto| MA-2MB - MC | nhỏ nhất khi M bằng bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
M = 2( a3 + b3 ) - 3( a2 + b2 )
= 2( a + b ) ( a2 - ab + b2 ) - 3( a2 + b2 )
= 2( a2 - ab + b2 ) - 3 ( a2 + b2 )
= 2a2 - 2ab + 2b2 - 3a2 - 3b2
= -a2 - 2ab - b2
= - ( a + b )2
= -1
Ta có A=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)\)
\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2=a^2-ab+b^2+3ab\left(1-2ab\right)+6a^2b^2\)
=\(\left(a+b\right)^2-3ab+3ab-6a^2b^2+6a^2b^2=1\)
2) Ta có \(A=\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1=0\)
Câu 6:C
Câu 8:C
Câu 9:Tìm phần bù của B trong A có nghĩa là tìm A\B
Ý D
Gọi \(I\left(a;b;c\right)\) là điểm sao cho \(\overrightarrow{IA}-2\overrightarrow{IB}-\overrightarrow{IC}=\overrightarrow{0}\)
\(\lrArr\left(2-a;1-b;-3-c\right)-2\left(1-a;-2-b;-1-c\right)-\left(-2-a;1-b;2-c\right)=\left(0;0;0\right)\)
\(\lrArr\begin{cases}2-a-2+2a+2+a=0\\ 1-b+4+2b-1+b=0\\ -3-c+2+2c-2+c=0\end{cases}\)
\(\lrArr\begin{cases}a=-1\\ b=-2\\ c=\frac32\end{cases}\)
\(\rArr I\left(-1;-2;\frac32\right)\)
Khi đó \(P=\left|\overrightarrow{MA}-2\overrightarrow{MB}-\overrightarrow{MC}\right|\)
\(=\left|\left(\overrightarrow{MI}+\overrightarrow{IA}\right)-2\left(\overrightarrow{MI}+\overrightarrow{IB}\right)-\left(\overrightarrow{MI}+\overrightarrow{IC}\right)\right|\)
\(=\left|-2\overrightarrow{MI}+\overrightarrow{IA}-2\overrightarrow{IB}-\overrightarrow{IC}\right|\)
\(=2MI\)
Để P đạt GTNN thì MI đạt GTNN \(\rArr\) M là hình chiếu của I lên trục Ox \(\rArr M\left(-1;0;0\right)\)
Vậy M(-1; 0; 0)