K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2024

   3\(x^2\) - 12\(x\)

= 3.\(x\)(\(x\) - 4)

b; \(x^2\) + 2\(xy\) - 25 + y2

= (\(x^2\) + 2\(xy\) + y2) - 25

= (\(x+y\))2 - 25

= (\(x+y\))2 - 52

= (\(x+y\) - 5).(\(x+y\) + 5)

 

 

26 tháng 12 2024

a) 3x² - 12x

  • Phân tích:

    • Ta thấy cả hai số hạng đều chia hết cho 3x.
    • Đặt nhân tử chung 3x ra ngoài, ta được: 3x² - 12x = 3x(x - 4)
  • Kết quả: Biểu thức đã được phân tích thành nhân tử: 3x(x - 4)

b) x² + 2xy - 25 + y²

  • Sắp xếp lại: Để dễ nhìn hơn, ta sắp xếp lại các hạng tử: x² + 2xy + y² - 25

  • Nhận biết hằng đẳng thức: Ta thấy:

    • x² + 2xy + y² là hằng đẳng thức (a + b)² = a² + 2ab + b² với a = x và b = y.
    • Vậy x² + 2xy + y² = (x + y)²
  • Viết lại biểu thức: x² + 2xy + y² - 25 = (x + y)² - 25

  • Nhận biết tiếp hằng đẳng thức: Ta thấy:

    • (x + y)² - 25 là hằng đẳng thức a² - b² = (a + b)(a - b) với a = x + y và b = 5.
    • Vậy (x + y)² - 25 = (x + y + 5)(x + y - 5)
  • Kết quả: Biểu thức đã được phân tích thành nhân tử: (x + y + 5)(x + y - 5)

20 tháng 10 2021

b: \(x^2-6x+xy-6y\)

\(=x\left(x-6\right)+y\left(x-6\right)\)

\(=\left(x-6\right)\left(x+y\right)\)

c: \(2x^2+2xy-x-y\)

\(=2x\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(2x-1\right)\)

e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

21 tháng 8 2019

Tìm min mn  ạ

22 tháng 8 2019

Câu a, b, c thì đơn giản òi. Câu d phải chú ý điểm rơi:v

d) Ta có: \(D=\left(x-\frac{1}{2}\right)^4+\frac{1}{2}\left(3x^2-3x+\frac{15}{8}\right)\)

\(=\left(x-\frac{1}{2}\right)^4+\frac{3}{2}\left(x-\frac{1}{2}\right)^2+\frac{9}{16}\ge\frac{9}{16}\)

Đẳng thức xảy ra khi x = 1/2

14 tháng 3 2022

\(A=3x^2y^3-5x^2+3x^3y^2\)

bậc 5, hệ số 3 

bạn xem lại đề B nhé 

14 tháng 3 2022

mình sửa câu B r bạn làm hộ mình

30 tháng 6 2018

\(3x^2+y^2+10x-2xy+26=0\)

\(\left(x^2-2xy+y^2\right)+2.\left(x^2+2.2,5x+2,5^2\right)+19,75=0\)

\(\left(x-y\right)^2+2.\left(x+2,5\right)^2+19,75=0\)(1)

Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\2.\left(x+2,5\right)^2\ge0\forall x\end{cases}\Rightarrow\left(x-y\right)^2+2.\left(x+2,5\right)^2+19,75\ge19,75}\)

\(\Rightarrow\left(x-y\right)^2+2.\left(x+2,5\right)^2+19,75>0\forall x;y\)(2)

Từ (1) và (2)

\(\Rightarrow\)x;y không có giá trị

Vậy x;y không có giá trị

23 tháng 10 2021

\(a,=\left(a+5+\dfrac{1}{2}-a\right)^2=\left(\dfrac{11}{2}\right)^2=\dfrac{121}{4}\\ b,=\dfrac{\left(x+y\right)^2-16}{3x\left(x-4+y\right)}=\dfrac{\left(x+y-4\right)\left(x+y+4\right)}{3x\left(x+y-4\right)}=\dfrac{x+y+4}{3x}\)

23 tháng 10 2021

a, \(\left(a+5\right)^2+2\left(a+5\right)\left(\dfrac{1}{2}-a\right)+\left(\dfrac{1}{2}-a\right)^2=\left(a+5+\dfrac{1}{2}-a\right)^2=\left(\dfrac{11}{2}\right)^2=\dfrac{121}{4}\)

b,\(\dfrac{x^2-16+2xy+y^2}{3x^2-12x+3xy}=\dfrac{\left(x^2+2xy+y^2\right)-4^2}{3x\left(x-4+y\right)}=\dfrac{\left(x+y-4\right)\left(x+y+4\right)}{3x\left(x+y-4\right)}=\dfrac{x+y+4}{3x}\)

16 tháng 12 2018

\(10x\left(x-y\right)-6y\left(y-x\right)\)

\(=10x\left(x-y\right)+6x\left(x-y\right)\)

\(=\left(10x+6x\right)\left(x-y\right)\)

\(c,3x^2+5y-3xy-5x\)

\(=\left(3x^2-3xy\right)+\left(5y-5x\right)\)

\(=3x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(3x-5\right)\left(x-y\right)\)

\(e,27+27x+9x^2=3\left(9+9x+x^2\right)\)

16 tháng 12 2018

\(f,8x^3-12x^2y+6xy^2-y^3\)

\(=\left(2x-y\right)^3\)

\(g,x^3+8y^3=x^3+\left(2y\right)^3\)

\(=\left(x+2y\right)\left(x^2-2xy+4x^2\right)\)

\(i,x^2-25-2xy+y^2\)

\(\left(x^2-2xy+y^2\right)-25=\left(x-y\right)^2-5^2\)

\(=\left(x-y-5\right)\left(x-y+5\right)\)

a: \(=8x^3+y^3-8x^3+y^3=2y^3\)

b: \(=25-x^4\)

c: \(=a^2+2ab+b^2-a^2+2ab-b^2=4ab\)

d: \(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2b^2\)

\(=6a^2b+2b^3-2b^2\)

e: \(=\left(x-1\right)^3\)

19 tháng 6 2015

a) x^2+2xy+y^2-16

=(x+y)2-16

=(x+y-4)(x+y+4)

b) 3x^2+5x-3xy-5y

=(3x2-3xy)+(5x-5y)

=3x(x-y)+5(x-y)

=(x-y)(3x+5)

c) 4x^2-6x^3y-2x^2+8x

ko bik hoặc sai đề

d) x^2-4-2xy+y^2

=(x-y)2-4

=(x-y+2)(x-y-2)

e) x^3-4x^2-12x+27

=sai đề

g) 3x^2-18x+27

=3(x2-6x+9)

=3(x-3)2

h) x^2-y^2-z^2-2yz

=x2-(y2+z2+2yx)

=x2-(y+z)2

=(x-y-z)(x+y+z)

k) 4x^2(x-6)+9y^2(6-x)

=4x2(x-6)-9y2(x-6)

=(x-6)(4x2-9y2)

=(x-6)(2x-3y)(2x+3y)

l)6xy+5x-5y-3x^2-3y^2

=(5x-5y)+(-3x2+6xy-3y2)

=5(x-y)-3(x2-2xy+y2)

=5(x-y)-3(x-y)2

=(x-y)(5-3(x-y))

=(x-y)(5-3x+3y)