Tìm số tự nhiên n để (n+10)chia hết cho (n+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B1:\)-Ta xát tổng của M
48 chia hết cho 4
20 chia hết cho 4
Ta áp dụng công thức a chia hết cho d;b chia hết cho d;c chia hết cho d
=>a+b+c chia hết cho d
=>Để m chia hết cho 4 thì a cũng phải chia hết cho 4
Để M không chia hết cho 4 thì a phải không chia hết cho 4
\(B2:\)1x2x3x4x5x...x20
=(5x20x4)x1x2x3x...
=400x1x2x3x...
Ta có 400 chia hết cho 400
Ta áp dụng công thức
a chia hết cho b thì a nhân với bất kì số nào cũng chia hết cho b
=>A chia hết cho 400
\(B3:\)Ta có n+10 chia hết cho n+1;n+1 chia hết cho n+1
=>(n+10)-(n+1) chia hết cho n+1
a,(n+10)-(n+1)=9
=>9 là bội của n+1
Ư(9)=(1;-1;3;-3;9;-9)
n+1 | 1 | -1 | -3 | 3 | 9 | -9 | |
n | 0 | -2 | -4 | 2 | 8 | -10 |
=.n=(0;-2;-4;2;8;-10
Nhận thấy A = 3n + 4n +1 chia hết cho 2 với mọi n tự nhiên, để A chia hết cho 10 ta cần A chia hết cho 5 là đủ.
Nhận xét: 34 \(\equiv\)1 (mod 5), ta sẽ xét các trường hợp: n = 4k, n = 4k+1, n = 4k+2, n = 4k+3 với k là số tự nhiên.
TH1: n = 4k.
A = 34k + 4.(4k) + 1 = 81k + 16k +1 \(\equiv\)1 + k + 1 \(\equiv\)2+k (mod 5)
Để A chia hết cho 5 thì k phải có dạng 5h + 3, với h là số tự nhiên. Vậy n = 4.(5h+3) = 20h +12 thì A chia hết cho 10.
Tương tự với các trường hợp sau bạn giải tiếp nhé!
iiiiiiiiiiiiiiiiiiiiirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggffffffffffffffffffffff
Bài 10:
\(ƯCLN\left(a,b\right)=14\Leftrightarrow\left\{{}\begin{matrix}a=14k\\b=14q\end{matrix}\right.\left(k,q\in N\text{*}\right)\\ ab=5488\Leftrightarrow196kq=5488\\ \Leftrightarrow kq=28\)
Mà \(\left(k,q\right)=1\Leftrightarrow\left(k;q\right)\in\left\{\left(4;7\right);\left(7;4\right);\left(1;28\right);\left(28;1\right)\right\}\)
\(\Leftrightarrow\left(a;b\right)\in\left\{\left(56;98\right);\left(98;56\right);\left(14;392\right);\left(392;14\right)\right\}\)
Bài 12:
\(n+20⋮n+5\\ \Leftrightarrow n+5+15⋮n+5\\ \Leftrightarrow n+5\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
Mà \(n\in N\Leftrightarrow n+5\in\left\{5;15\right\}\)
\(\Leftrightarrow n\in\left\{0;10\right\}\)
n10 +1 chia hết cho 10
=> n10 có chữ số tận cùng là 9
=> n10 = (n5)2 => n5 chữ số tận cùng là 3 => n có chữ số tận cùng là 3
=> n thuộc { 3;13;23;.....}
đẻ n^10 +1 chia hết cho 10 => n^10 có c/s tận cùng là 9
mà n^10 = n^5.2 = (n^5)^2
=> n^5 có c/s tận cùng là 3
vậy n thuộc : 3;13;23;..........
Vì : n + 10 chia hết cho n + 2
Mà : n + 2 chia hết cho n + 2
=> ( n + 10 ) - ( n + 2 ) chia hết cho n + 2
=> n + 10 - n - 2 chia hết cho n + 2
=> 8 chia hết cho n + 2
Mà : n + 2 \(\ge\) 2
=> n + 2 \(\in\) { 2;4;8 }
+) n + 2 = 2
=> n = 0
+) n + 2 = 4
=> n = 2
+) n + 2 = 8
=> n = 6
Vậy ....
10 chia hết cho n + 1
-> n + 1 thuộc ước của 10
-> Ư10=(1;2;5;10)
-> n = (0;1;4;9)
10 chia hết cho n + 1
=> n + 1 ϵ Ư(10)
=> Ư(10)= {1;2;5;10}
=> n = {0;1;4;9}
Ta có: \(n+10⋮n+3\)
=>\(n+3+7⋮n+3\)
=>\(7⋮n+3\)
=>\(n+3\in\left\{1;-1;7;-7\right\}\)
=>\(n\in\left\{-2;-4;4;-10\right\}\)
mà n là số tự nhiên
nên n=4
n=4 nha bạn