61-(x-2).3=-20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3,2x-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):3\dfrac{2}{3}=\dfrac{7}{20}\\ \Rightarrow\dfrac{16}{5}x-\dfrac{22}{15}:\dfrac{11}{3}=\dfrac{7}{20}\\ \Rightarrow\dfrac{16}{5}x-\dfrac{2}{5}=\dfrac{7}{20}\\ \Rightarrow\dfrac{16}{5}x=\dfrac{3}{4}\\ \Rightarrow x=\dfrac{15}{64}\)
\(\left(4\dfrac{1}{2}-2x\right).1\dfrac{4}{61}=6\dfrac{1}{2}\\ \Rightarrow\left(\dfrac{9}{2}-2x\right).\dfrac{65}{61}=\dfrac{13}{2}\\ \Rightarrow\dfrac{9}{2}-2x=\dfrac{61}{10}\\ \Rightarrow2x= -\dfrac{8}{5}\\ \Rightarrow x=-\dfrac{4}{5}\)
\(\text{1,(-14)+(2x–4^2)=/-10/×/5/}\)
\(-14-16+2x=10.5\)
\(-30+2x=50\)
\(2x=50--30\)
\(2x=80\)
\(x=80:2\)
\(x=40\)
\(\text{2,(-100)–/x+20/=-150}\)
\(|x+20|=-100--150\)
\(|x+20|=50\)
\(\Rightarrow\orbr{\begin{cases}x+20=50\\x+20=-50\end{cases}\Leftrightarrow\orbr{\begin{cases}x=30\\x=-70\end{cases}}}\)
\(\Rightarrow x\in\left\{-70;30\right\}\)
\(\text{3)3x+16=4x–61}\)
\(3x-4x=-61-16\)
\(-x=-77\)
\(\Rightarrow x=77\)
\(\text{4,2(x–5)–3(x+6)=0}\)
\(2x-10-3x-18=0\)
\(2x-3x=0+18+10\)
\(-x=28\)
\(x=-28\)
chúc bạn học tốt
Tính giá trị của biểu thức:
a) 324 – 20 + 61 = 356
b) 21 x 3 : 9 = 7
c) 201 + 39 : 3 = 214
d) 123 x (42 - 38) = 528
a: ĐKXĐ: \(x\notin\left\{4;-4\right\}\)
\(\dfrac{7}{4x+16}=\dfrac{7}{4\left(x+4\right)}=\dfrac{7\left(x-4\right)}{4\left(x+4\right)\left(x-4\right)}\)
\(\dfrac{11}{x^2-16}=\dfrac{11\cdot4}{4\left(x^2-16\right)}=\dfrac{44}{4\left(x-4\right)\left(x+4\right)}\)
b: \(\dfrac{6}{x\left(x+3\right)^2};\dfrac{x-3}{2x\left(x+3\right)^2}\)
ĐKXĐ: \(x\notin\left\{0;-3\right\}\)
\(\dfrac{6}{x\left(x+3\right)^2}=\dfrac{6\cdot2}{2x\left(x+3\right)^2}=\dfrac{12}{2x\left(x+3\right)^2}\)
\(\dfrac{x-3}{2x\left(x+3\right)^2}=\dfrac{x-3}{2x\left(x+3\right)^2}\)
c: \(\dfrac{-6}{1-x};\dfrac{3x}{x^2+x+1};\dfrac{x^2-3x+5}{x^3-1}\)
ĐKXĐ: \(x\ne1\)
\(-\dfrac{6}{1-x}=\dfrac{6}{x-1}=\dfrac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{6x^2+6x+6}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{3x}{x^2+x+1}=\dfrac{3x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{x^2-3x+5}{x^3-1}=\dfrac{x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
d: \(\dfrac{17}{5x};\dfrac{24}{x-2y};\dfrac{x-y}{8y^2-2x^2}\)
ĐKXĐ: \(x\ne0;x\ne\pm2y\)
\(\dfrac{17}{5x}=\dfrac{17\cdot2\left(x-2y\right)\left(x+2y\right)}{5x\cdot2\cdot\left(x-2y\right)\left(x+2y\right)}=\dfrac{34\left(x^2-4y^2\right)}{10x\left(x-2y\right)\left(x+2y\right)}\)
\(\dfrac{24}{x-2y}=\dfrac{24\cdot10x\left(x+2y\right)}{10x\left(x-2y\right)\left(x+2y\right)}=\dfrac{240x\left(x+2y\right)}{10x\left(x-2y\right)\left(x+2y\right)}\)
\(\dfrac{x-y}{8y^2-2x^2}=\dfrac{-\left(x-y\right)}{2x^2-8y^2}=\dfrac{-\left(x-y\right)}{2\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{-5x\left(x-y\right)}{10x\left(x-2y\right)\left(x+2y\right)}=\dfrac{-5x^2+5xy}{10x\left(x-2y\right)\left(x+2y\right)}\)
a) 24 × y : 20 = 480
24 × y = 480 × 20
24 × y = 9600
y = 9600 : 24
y = 400
b) 12862 : y - 296 = 61
12852 : y = 61 + 296
12852 : y = 357
y = 12852 : 357
y = 36
\(61-\left(x-2\right)\cdot3=-20\)
\(\left(x-2\right)\cdot3=61-\left(-20\right)\)
\(\left(x-2\right)\cdot3=61+20\)
\(\left(x-2\right)\cdot3=81\)
\(x-2=81\div3\)
\(x-2=27\)
\(x=27+2\)
\(x=29\)
Vậy \(x=29\)
(x-2).3=61-(-20)=61+20=81
x-2=81:3=27
x=27+2=29
Vậy x=29