Cho tam giác ABC vuông tại A Biết B=45 Tính số đo góc C hỏi tam giac ABC là tam giác gì Vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bạn tự vẽ hình nha!
a.
Ta có:
- B1 + B2 = 180
- C1 + C2 = 180
mà B1 = C1 (tam giác ABC cân tại A)
=> B2 = C2 (1)
Xét tam giác ADB và tam giác AEC:
AB = AC (tam giác ABC cân tại A)
B2 = C2 (theo 1)
BD = CE (gt)
=> Tam giác ADB = ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE
b.
Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:
AB = AC (tam giác ABC cân tại A)
A1 = A2 (tam giác ADB = tam giác AEC)
=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng)
AH = AK (2 cạnh tương ứng)
c.
Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:
BH = CK (theo câu b)
BD = CE (gt)
=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)
Ta có:
DBH = IBC (2 góc đối đỉnh)
KCE = ICB (2 góc đối đỉnh)
mà DBH = KCE (tam giác HDB = tam giác KEC)
=> IBC = ICB
=> Tam giác IBC cân tại I

a)A=70
b)tam giac ABC la tam giac nhon vi co so do 3 canh <90

a) Từ \(\Delta ABC\)cân tại A, \(\Rightarrow\widehat{B}=\widehat{C}=75^o\)
\(\Rightarrow\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)\)
\(\Rightarrow\widehat{A}=180^o-\left(75^o+75^o\right)\)
\(\Rightarrow\widehat{A}=30^o\)
b) Từ \(\Delta MNP\)cân tại P, \(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{P}}{2}=\frac{80^o}{2}=40^o\)
c) Ta có: \(NP^2=13^2=169\)(1)
\(MN^2+MP^2=5^2+12^2=25+144=169\)(2)
Từ (1) và (2) suy ra: \(NP^2=MN^2+MP^2\)
\(\Rightarrow\Delta MNP\)vuông (theo định lí Pytago)
Happy new year!!!

a/ Ta có \(\widehat{A}=180^o-\widehat{B}-\widehat{C}\)(tổng ba góc của một tam giác)
=> \(\widehat{A}=180^o-40^o-50^o\)
=> \(\widehat{A}=90^o\)=> \(\Delta ABC\)vuông tại A
=> AB2 + AC2 = BC2 (định lí Pitago)
=> AC2 = BC2 - AB2
=> AC2 = 122 - 92
=> AC2 = 144 - 81
=> AC2 = 63
=> AC = \(\sqrt{63}\)(cm)

Bài 1:
a=2b=3c
=>a/6=b/3=c/2
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{6}=\dfrac{b}{3}=\dfrac{c}{2}=\dfrac{a+b+c}{6+3+2}=\dfrac{180}{11}\)
=>a=1080/11; b=540/11; c=360/11

A B C D E F M a b
a) Ta có AD là phân giác ^BAC, DE và DF lần lượt vuông góc AB;AC nên DE=DF
Xét \(\Delta\)AFD vuông tại F có ^DAF=1/2^BAC=600 => ^ADF=300
Tương tự tính được: ^ADE=300 = >^ADF+^ADE=^EDF=600
Xét \(\Delta\)DEF: ^EDF=600; DE=DF => \(\Delta\)DEF là tam giác đều.
b) Dễ thấy ^CAM=1800-^BAC=600.
CM // AD => ^ACM=^DAC=1/2^BAC=600
Từ đó suy ra \(\Delta\)ACM là tam giác đều.
c) Do \(\Delta\)ACM đều => CM=AC => CM-CF=CA-CF=AF
=> a - b = AF. Lại có: Tam giác AFD là tam giác nửa đều => AF=1/2AD
=> a - b = 1/2AD => AD= 2(a - b).
Vậy .........
Cho tam giác ABC vuông tại a góc b bằng 45 độ hãy chỉ gia đình trung trực của đoạn thẳng bc