Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trọng tâm của tam giác đều cách đều ba cạnh của nó :
Giả sử ∆ABC đều có trọng tâm G
=> GA = 2323AN; GB = 2323BM; GC = 2323EC
Vì ∆ABC đều nên ba trung tuyến AN, BM, CE bằng nhau
=> GA = GB = GC
Do đó: ∆AMG = ∆CMG (c.c.c)
=> ˆAMG=ˆCMGAMG^=CMG^
Mà ˆAMG=ˆCMGAMG^=CMG^ = 1800
=> ˆAMGAMG^ = 900
=> GM ⊥ AC tức là GM khoảng cách từ G đến AC
Chứng minh tương tự GE, GN là khoảng cách từ G đến AB, AC
Mà GM =1313BM; GN = 1313AN; EG = 1313EC
Và AN = BM = EC nên GM = GN = GE
Hay G cách đều ba cạnh của tam giác ABC
dùng các công thức trong tam giác vuông
\(\alpha\)và\(\beta\) là hai góc nhọn phụ nhau
\(\Rightarrow\sin\alpha=\cos\beta\)và ngược lại
\(\tan\alpha=\cot\beta\)và ngược lại
còn có công thức \(\tan\alpha.\cot\alpha=1\)
Kết quả hơi lớn bạn nhé!
A=\(\frac{1}{31}\left[\frac{31}{5}\left(9-\frac{1}{2}\right)-\frac{17}{2}\left(4+\frac{1}{5}\right)+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{930}\right]\)
=\(\frac{1}{31}\left[\frac{31}{5}\left(\frac{18}{2}-\frac{1}{2}\right)-\frac{17}{2}\left(\frac{20}{5}+\frac{1}{5}\right)+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{30.31}\right]\)
=\(\frac{1}{31}\left[\frac{31}{5}.\frac{17}{2}-\frac{17}{2}.\frac{21}{5}+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{30}-\frac{1}{31}\right]\)
=\(\frac{1}{31}\left[\frac{17}{2}.\left(\frac{31}{5}-\frac{21}{5}\right)+1-\frac{1}{31}\right]\)
=\(\frac{1}{31}\left[\frac{17}{2}.\frac{10}{5}+\frac{31}{31}-\frac{1}{31}\right]\)
=\(\frac{1}{31}\left[\frac{17}{2}.2+\frac{30}{31}\right]\)
=\(\frac{1}{31}\left[17+\frac{30}{31}\right]\)
=\(\frac{1}{31}\left[\frac{527}{31}+\frac{30}{31}\right]\)
=\(\frac{1}{31}.\frac{557}{31}=\frac{557}{961}\)
\(=\dfrac{119}{23}\left(27+\dfrac{3}{47}-4-\dfrac{3}{47}\right)=23\cdot\dfrac{119}{23}=119\)
A= \(\left(1-\frac{1}{1+2}\right)\)\(\left(1-\frac{1}{1+2+3}\right)\) \(\left(1-\frac{1}{1+2+3+4}\right)\) .....\(\left(1-\frac{1}{1+2+3+...+2005+2006}\right)\)
A = \(\left(1-\frac{1}{3}\right)\) \(\left(1-\frac{1}{6}\right)\) \(\left(1-\frac{1}{10}\right)\) .... \(\left(1-\frac{1}{2013021}\right)\)
= \(\frac{2}{3}\) . \(\frac{5}{6}\) . \(\frac{9}{10}\) .....\(\frac{2013020}{2013021}\)
= \(\frac{4}{6}\).\(\frac{10}{12}\).\(\frac{18}{20}\)....\(\frac{4026040}{4026042}\)
= \(\frac{1.4}{2.3}\).\(\frac{2.5}{3.4}\).\(\frac{3.6}{4.5}\).\(\frac{2005.2008}{2006.2007}\)
= \(\frac{1.2.3.4...2005}{2.3.4.5...2006}\).\(\frac{4.5.6...2008}{3.4.5...2007}\)
= \(\frac{1}{2006}.\frac{2008}{3}=\frac{1004}{3009}\)
A B C O H M N I D T
a/
Xét tg vuông ABO và tg vuông ACO
\(OB=OC=R\); OA chung => tg ABO = tg ACO (2 tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow AB=AC\) => tg ABC cân tại A
Xét tg cân ABC
tg ABO = tg ACO (cmt) \(\Rightarrow\widehat{OAB}=\widehat{OAC}\)
\(\Rightarrow AO\perp BC\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao và là đường trung tuyến)
b/
Xét tg vuông ABO có
\(BH^2=OH.HA\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa hình chiếu 2 cạnh góc vuông trên cạnh huyền)
Ta có
AO là đường trung tuyến của tg ABC (cmt) => BH=CH
\(\Rightarrow BH=CH=\dfrac{BC}{2}\)
\(\Rightarrow BH^2=\left(\dfrac{BC}{2}\right)^2=OH.HA\)
\(\Rightarrow4OH.HA=BC^2\)
c/
Xét tg vuông ABO có
\(OB^2=R^2=OH.OA\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông IDO có
\(OD^2=R^2=OT.OI\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow OH.OA=OT.OI=R^2\)