Cho p là SNT lớn hơn 3.Chứng minh rằng:\(\left(p-1\right)\left(p+1\right)⋮24\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một số nguyên tố lớn hơn 3 khi chia cho 3 sẽ có 2 khả năng xảy ra
p = 3k + 1 ; p = 3k + 2 ;
Với p = 3k + 1
=> (p + 1)(p - 1) = p2-1=(3k+1)2-1=9k2+6k=3k(3k+2)
Vì đây là tích 2 số tự nhiên liên tiếp => chia hết cho 2 , 3 => (p-1)(p+1) chia hết cho 6
C/m tương tự để chia hết cho 24
Với p = 3k + 2
tương tự
Ta đi phản chứng, giả sử P(x) có thể phân tích được thành tích hai đa thức hệ số nguyên bậc lớn hơn 1.
đặt \(P\left(x\right)=Q\left(x\right).H\left(x\right)\)với bậc của Q(x) và H(x) lớn hơn 1
Ta Thấy \(Q\left(i\right).H\left(i\right)=P\left(i\right)=-1\)với i=1,2,...2020.
suy ra \(\hept{\begin{cases}Q\left(i\right)=1\\H\left(i\right)=-1\end{cases}}\)hoặc \(\hept{\begin{cases}Q\left(i\right)=-1\\H\left(i\right)=1\end{cases}}\) suy ra \(Q\left(i\right)+H\left(i\right)=0\)với i=1,2,...,2020
mà bậc của Q(x) và H(x) không vượt quá 2019 suy ra \(Q\left(x\right)+H\left(x\right)=0\Rightarrow Q\left(x\right)=-H\left(x\right)\Rightarrow P\left(x\right)=-\left(Q\left(x\right)\right)^2\)
xét hệ số đơn thức bậc cao nhất của \(P\left(x\right)\) bằng 1
hệ số đơn thức bậc cao nhất của \(-\left(Q\left(x\right)\right)^2\) bằng -1. Suy ra vô lý.
Vậy P(x) không thể phân tích thành hai đa thức hệ số nguyên có bậc lớn hơn 1.
\(\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2};\frac{z^3}{x\left(y+2z\right)}\ge\frac{x+y+z}{3}\)
Lời giải:
Theo đề bài ta có \((a_i,p)=1\) với \(i=\overline{1,n}\)
Do đó áp dụng định lý Fermat nhỏ ta có:
\(a_i^{p-1}\equiv 1\pmod p\)
\(\Leftrightarrow a_i^{(p-1)k_i}\equiv 1^{k_i}\equiv 1\pmod p\)
Suy ra:
\(A=p_1a_1^{(p-1)k_1}+p_2a_2^{(p-1)k_2}+...+p_na_n^{(p-1)k_n}\equiv p_1+p_2+...+p_n\pmod p\)
Do đó:
\(A\vdots \Rightarrow p_1+p_2+...+p_n\vdots p\)
\(p_1+p_2+....+p_n\vdots p\Rightarrow A\vdots p\)
Điều này tương đương với: \(A\vdots p\Leftrightarrow \sum p_i\vdots p\)
Ta có đpcm.