căn bậc 3 (9+ căn(80)) + căn bậc 3 (9- căn(80))
rút gọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(15\sqrt{\dfrac{4}{3}}-5\sqrt{48}+2\sqrt{12}-6\sqrt{\dfrac{1}{3}}\)
\(=\sqrt{15^2\cdot\dfrac{4}{3}}-5\cdot4\sqrt{3}+2\cdot2\sqrt{3}-\sqrt{6^2\cdot\dfrac{1}{3}}\)
\(=\sqrt{\dfrac{225\cdot4}{3}}-20\sqrt{3}+4\sqrt{3}-\sqrt{\dfrac{36}{3}}\)
\(=\sqrt{75\cdot4}-16\sqrt{3}-\sqrt{12}\)
\(=10\sqrt{3}-16\sqrt{3}-2\sqrt{3}\)
\(=-8\sqrt{3}\)
b) \(\dfrac{15}{\sqrt{6}+1}-\dfrac{3}{\sqrt{7}-\sqrt{2}}-15\sqrt{6}+3\sqrt{7}\)
\(=\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\dfrac{3\left(\sqrt{7}+\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}-15\sqrt{6}+3\sqrt{7}\)
\(=\dfrac{15\left(\sqrt{6}-1\right)}{6-1}-\dfrac{3\sqrt{7}+3\sqrt{2}}{7-2}-15\sqrt{6}+3\sqrt{7}\)
\(=3\left(\sqrt{6}-1\right)-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)
\(=3\sqrt{6}-3-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)
\(=-12\sqrt{6}-3+3\sqrt{7}-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}\)
\(=\dfrac{-60\sqrt{6}-15+15\sqrt{7}-3\sqrt{7}-3\sqrt{2}}{5}\)
\(=\dfrac{-60\sqrt{6}-15+12\sqrt{7}-3\sqrt{2}}{5}\)
\(=\sqrt{5}-\sqrt{3}+\sqrt{5}-2=2\sqrt{5}-2-\sqrt{3}\)
\(\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)
\(a,=3\sqrt{5}-2\sqrt{5}-\sqrt{5}+5\sqrt{5}=5\sqrt{5}\\ b,=9\sqrt{a}-6\sqrt{a}-\sqrt{a}=2\sqrt{a}\\ c,Sửa:3\sqrt[3]{27}-3\sqrt[3]{-8}-3\sqrt[3]{-125}\\ =3\cdot3-3\left(-2\right)-3\left(-5\right)\\ =9+6+15=30\)
Đặt \(A=\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)
=>\(A^3=9+\sqrt{80}+9-\sqrt{80}+3\cdot\sqrt[3]{\left(9+\sqrt{80}\right)\left(9-\sqrt{80}\right)}\cdot\left(\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\right)\)
=>\(A^3=18+3A\)
=>\(A^3-3A-18=0\)
=>\(A^3-3A^2+3A^2-9A+6A-18=0\)
=>\(\left(A-3\right)\left(A^2+3A+6\right)=0\)
mà \(A^2+3A+6=\left(A+\dfrac{3}{2}\right)^2+\dfrac{15}{4}>=\dfrac{15}{4}>0\forall A\)
nên A-3=0
=>A=3