\(\sqrt{ }\)7.abc=129,394
tìm abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\sqrt[3]{abc}\le a+b+c\Rightarrow abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{1}{27}\) (BĐT AM-GM)
\(\sqrt{a^2+abc}=\sqrt{a\left(a+bc\right)}=\frac{2}{3}\sqrt{\frac{9}{4}a\left(a+bc\right)}\le\frac{2}{3}\left(\frac{\frac{9}{4}a+a+bc}{2}\right)\) (BĐT AM-GM)
Tương tự: \(\Rightarrow\)\(A\le\frac{1}{3}\left(\frac{9}{4}\left(a+b+c\right)+a+b+c+ab+bc+ca\right)+9\sqrt{\frac{1}{27}}\)
mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
=>giải được
Ta có:
Theo bất đẳng thức Cô - si, ta có: \(\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{bc}\le\frac{a+b+a+c}{2}+\frac{b+c}{2}=1\)
\(\Rightarrow\sqrt{a}\left(\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{bc}\right)\le\sqrt{a}\)hay \(\sqrt{a^2+abc}+\sqrt{abc}\le\sqrt{a}\)
Tương tự ta có: \(\sqrt{b^2+abc}+\sqrt{abc}\le\sqrt{b}\);\(\sqrt{c^2+abc}+\sqrt{abc}\le\sqrt{c}\)
Mà \(abc\le\left(\frac{a+b+c}{3}\right)^3=\frac{1}{27}\Rightarrow\sqrt{abc}\le\frac{1}{3\sqrt{3}}\)
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\le3\left(a+b+c\right)=3\)\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
\(a,b,c\ge0\Rightarrow abc\ge0\Rightarrow\sqrt{a^2+abc}\ge\sqrt{a^2}=a\)
Tương tự:\(\sqrt{b^2+abc}\ge b,\sqrt{c^2+abc}\ge c\)
\(\Rightarrow A\ge a+b+c+0=1\)
Đẳng thức xảy ra \(\Leftrightarrow abc=0,a+b+c=1\)(bạn tự giải tiếp)
Ta có \(ab+bc+ca=3abc\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) thì ta có \(x,y,z>0;x+y+z=3\) và
\(\sqrt{\dfrac{a}{3b^2c^2+abc}}=\sqrt{\dfrac{\dfrac{1}{x}}{3.\dfrac{1}{y^2z^2}+\dfrac{1}{xyz}}}=\sqrt{\dfrac{\dfrac{1}{x}}{\dfrac{3x+yz}{xy^2z^2}}}=\sqrt{\dfrac{y^2z^2}{3x+yz}}\) \(=\dfrac{yz}{\sqrt{3x+yz}}\) \(=\dfrac{yz}{\sqrt{x\left(x+y+z\right)+yz}}\) \(=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
Do đó \(T=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
Lại có \(\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}\)
Lập 2 BĐT tương tự rồi cộng theo vế, ta được \(T\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}+\dfrac{zx}{2\left(y+z\right)}+\dfrac{zx}{2\left(y+x\right)}\) \(+\dfrac{xy}{2\left(z+x\right)}+\dfrac{xy}{2\left(z+y\right)}\)
\(T\le\dfrac{yz+zx}{2\left(x+y\right)}+\dfrac{xy+zx}{2\left(y+z\right)}+\dfrac{xy+yz}{2\left(z+x\right)}\)
\(T\le\dfrac{x+y+z}{2}\) (do \(x+y+z=3\))
\(T\le\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\) \(\Leftrightarrow a=b=c=1\)
Vậy \(maxT=\dfrac{3}{2}\), xảy ra khi \(a=b=c=1\)
(Mình muốn gửi lời cảm ơn tới bạn Nguyễn Đức Trí vì ý tưởng của bài này chính là bài mình vừa hỏi lúc nãy trên diễn đàn. Cảm ơn bạn Trí rất nhiều vì đã giúp mình có được lời giải này.)
Bạn Lê Song Phương xem lại dùm nhé, thanks!
\(...\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\)
\(...\Rightarrow T\le2.3=6\)
\(\Rightarrow GTLN\left(T\right)=6\left(tạia=b=c=1\right)\)
\(\sqrt{\overline{abc}}-\sqrt{\overline{acb}}=1\Leftrightarrow\left(\sqrt{\overline{abc}}-\sqrt{\overline{acb}}\right)\left(\sqrt{\overline{abc}}+\sqrt{\overline{acb}}\right)=\sqrt{\overline{abc}}+\sqrt{\overline{acb}}\)
\(\Leftrightarrow\overline{abc}-\overline{acb}=\sqrt{\overline{abc}}+\sqrt{\overline{acb}}\)
Ta có: \(\overline{abc}-\overline{acb}=9b-9c=9\left(b-c\right)\)
suy ra \(\sqrt{\overline{abc}}\) và \(\sqrt{\overline{acb}}\) là hai số tự nhiên liên tiếp có tổng chia hết cho \(9\).
mà \(10\le\sqrt{\overline{acb}}< \sqrt{\overline{abc}}< 32\) nên suy ra \(\sqrt{\overline{acb}}\in\left\{13,22\right\}\).
Thử với từng trường hợp ta được \(\sqrt{\overline{acb}}=13\) suy ra \(\overline{acb}=169\) thỏa mãn \(\sqrt{\overline{abc}}=\sqrt{196}=14=13+1\).
Vậy \(\overline{abc}=196\).
Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già
48,906335020555947838195152689485
25x25=gd