K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2024

Ta có: \(a^2+a+3⋮a+1\)

=>\(a\left(a+1\right)+3⋮a+1\)

=>\(3⋮a+1\)

=>\(a+1\in\left\{1;-1;3;-3\right\}\)

=>\(a\in\left\{0;-2;2;-4\right\}\)

27 tháng 11 2024

                                             Giải

Ta có:

   a2 + a + 3

= a(a + 1) + 3

   Để [a(a + 1) + 3] ⋮ (a + 1)  (1)

   Mà [a(a + 1)] ⋮ (a +1)    (2)

  Từ (1) và (2) , suy ra:

   3 ⋮ (a + 1)

⇒(a + 1) ϵ Ư(3)

⇒(a + 1) ϵ {1; -1; 3; -3}

⇒a ϵ {0; -2; 2; -4} ϵ Z

   Vậy a ϵ {0; -2; 2; -4}

                    

 

2 tháng 1 2024

a + 6  ⋮ a + 3 (đk a  ≠0; a \(\in\) Z)

a + 3 + 3 ⋮ a + 3

            3 ⋮ a + 3

a + 3     \(\in\) Ư(3) = {- 3; -1; 1; 3}

\(\in\) {-6; -4; -2; 0}

2 tháng 1 2024

Bài 2: 

n - 3 ⋮ n - 1 (đk n \(\ne\) 1)

n - 1 - 2 ⋮ n - 1

          2  ⋮ n - 1

n - 1 \(\in\) Ư(2) = {-2; -1; 1; 2}

\(\in\) {-1; 0; 2; 3}

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 1:

$A=(n-1)(2n-3)-2n(n-3)-4n$

$=2n^2-5n+3-(2n^2-6n)-4n$

$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$

$=(2n-3)(n+2+n)+n(n+10)$

$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$

$=5n^2+8n-6=5n(n+3)-7(n+3)+15$

$=(n+3)(5n-7)+15$

Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$

$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$

$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$

31 tháng 3 2023

Ai có lời giải k ạ

13 tháng 2 2016

3/ => a(b-2) thuộc Ư(3) = {1;3;-1;-3}

Mà a > 0

=> a thuộc {1;3}

Ta có bảng kết quả:

a13
b-231
b53

 

b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{0;-1;1;-2\right\}\)

15 tháng 12 2016

làm câu

Bài 2: 

Gọi hai số cần tìm là a;a+1

Theo đề, ta có: 

\(\left(a+1\right)^2-a^2=2013\)

=>2a+1=2013

=>2a=2012

hay a=1006

Vậy: hai số cần tìm là 1006 và 1007

19 tháng 12 2015

Câu 2: Nếu a,b là số nguyên tố lớn hơn 3 => a,b lẻ

vì a ;b lẻ nên a;b chia 4 dư 1 hoặc 3(vì nếu dư 2 thì a ;b chẵn) đặt a = 4k +x ; b = 4m + y 
với x;y = {1;3} 
ta có: 
a^2 - b^2 = (a-b)(a+b) = (4k -4m + x-y)(4k +4m +x+y) = 
16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) 
nếu x = 1 ; y = 3 và ngược lại thì x+y chia hết cho 4 và x-y chia hết cho 2 
=> 16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8 
=> a^2 - b^2 chia hết cho 8 
nếu x = y thì 
x-y chia hết cho 8 và x+y chia hết cho 2 
=> 4(k-m)(x+y) chia hết cho 8 và 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8 
=> a^2 - b^2 chia hết cho 8 
vậy a^2 - b^2 chia hết cho 8 với mọi a,b lẻ (1) 
ta có: a;b chia 3 dư 1 hoặc 2 => a^2; b^2 chia 3 dư 1 
=> a^2 - b^2 chia hết cho 3 (2) 
từ (1) và (2) => a^2 -b^2 chia hết cho 24 
Tick nha TFBOYS