K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2024

-100

25 tháng 11 2024

x-2xy+y=0

=>\(x\left(1-2y\right)+y=0\)

=>\(-x\left(2y-1\right)+y-0,5=-0,5\)

=>\(-2x\left(y-0,5\right)+\left(y-0,5\right)=-0,5\)

=>\(-2x\left(2y-1\right)+\left(2y-1\right)=-1\)

=>\(\left(2y-1\right)\left(-2x+1\right)=-1\)

=>\(\left(2x-1\right)\left(2y-1\right)=1\)

=>\(\left(2x-1;2y-1\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(1;1\right);\left(0;0\right)\right\}\)

NV
19 tháng 12 2020

\(A=\dfrac{-\left(x^2+2xy+y^2\right)+4x^2+4xy+y^2}{x^2+2xy+y^2}=-1+\left(\dfrac{2x+y}{x+y}\right)^2\ge-1\)

\(A_{min}=-1\) khi \(2x+y=0\)

5 tháng 10 2019

a) \(2x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)

Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)

5 tháng 10 2019

b)\(x^2+3y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)

nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

nên pt vô nghiệm

16 tháng 11 2019

bấn MT

cần gấp

12 tháng 6 2016

x -2xy+y=0

<=> 2x - 4xy + 2y = 0

<=> 2x - 4xy + 2y - 1 = -1 

<=> (2x - 4xy) - (1 - 2y) = -1 

<=> 2x(1 - 2y) - (1 - 2y) = -1 

<=> (2x - 1)(1 - 2y) = - 1 

Tới đây bạn lập băng ra nhé

12 tháng 6 2016

x -2xy+y=0

<=> 2x - 4xy + 2y = 0

<=> 2x - 4xy + 2y - 1 = -1 

<=> (2x - 4xy) - (1 - 2y) = -1 

<=> 2x(1 - 2y) - (1 - 2y) = -1 

<=> (2x - 1)(1 - 2y) = - 1 

8 tháng 3 2023

a)ta có :2xy-6=4x-y => 2xy-6-4x+y=0 => 2*(2xy-6-4x+y)=2*0               =>4xy-12-8x+2y=0 => 2x2y-4-8-8x+2y=0 => 2x2y-4-8x+2y=8                 =>(2x2y+2y)-(8x+4)=8 =>2y(2x+1)-4(2x+1)=8 => (2y-4)(2x+1)=8           Ta có bảng sau :

2y-4 1 8 2 4 -1 -8 -2 -4
2x+1 8 1 4 2 -8 -1 -4 -2
y(yϵ\(ℤ\)) 5/2(loại ) 6(thỏa mãn) 3(loại) 4(loại) 3/2( loại) -2(thỏa mãn) 1( loại) 0(loại )
x(xϵ\(ℤ\)) 7/2(loại) 0(thỏa mãn) 3/2( loại) 1/2( loại) -9/2( loại) -1(thỏa mãn) -5/2( loại) -3/2( loại)

Vậy các cặp nghiệm x,y thỏa mãn là (0;6) và (-1;-2)

7 tháng 2

Cãi nhau chuyện gì mà như kiểu tranh người yêu thế

9 tháng 2 2018

Ta có x-2xy+y=0

<=> 2x-4xy+2y=0

<=> 2x(1-2y)-(1-2y)=-1

<=> (1-2y)(2x-1)=-1

=> 1-2y và 2x-1 là ước của -1

Ta có bảng sau:

2x-1-11
x01
1-2y1-1
y01

Vậy ...

3 tháng 2 2016

Câu 1:
x-2xy+y=0
x(1-2y)-1/2(1-2y)=-1/2
(x-1/2)(1-2y)=-1/2
Nhân cả 2 vế vs 2 ta đc:
(2x-1)(1-2y)=-1=1.-1
Do x,y nguyên nên ta dễ dàng tìm được x,y
Câu 2:
x-y=2 (x-y)^2=4
x^2+y^2-2xy=4
x^2+y^2-xy=4+xy
để x^2+y^2-xy min4+xy min
xy min-xy max
Do x+(-y)=2 ko đổi
-xy max  x=-y=1x=1,y=-1
Vậy vs x=1,y=-1 thì x^2+y^2-xy min=3

3 tháng 2 2016

minh chua hok toi lop 7

11 tháng 4 2020

x - 2xy + y = 0

=> 2x - 4xy + 2y = 0

=> 2x(1 - 2y) - 1 + 2y = -1

=> 2x(1 - 2y) - (1 - 2y) = -1

=> (2x - 1)(1 - 2y) = -1

lập bảng...

11 tháng 4 2020

     Trả lời:
x‐2xy+y=0
=> x‐(2xy‐y)=0
=> x‐ y(2x‐1)=0
=> (2x‐2y)(2x‐1)=0
=> ( 2x‐1) ‐2y(2x‐1)=‐1
=> (2x‐1)(1‐2y)=‐1
=> ( 2x‐1 ; 1‐2y ) = ( ‐1 ;1 ﴿ ; ﴾1;‐1 )
=> (x;y)=( 0 ; 0 ) ; ( 1;1)

HOK TỐT

# mui #