a)x3-16x=0
b) x4-2x3+10x2-20x=0
c)(2x-3)2=(x+5)2
d)x2(x-1)-4x2+8x-4=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
x^3 - 16x = 0
x(x^2 - 16) = 0
Nghiệm thứ nhất: x=0
Tiếp tục:
x^2 - 16 = 0
x^2 - 4^2 = 0
(x-4)*(x+4) = 0
Nếu x-4=0 ta có nghiệm thứ hai x=4
Nếu x+4=0 ta có nghiệm thứ ba x= -4
Vậy phương trình có hệ nghiệm là:
x=0
x=4
x= -4
~ Cậu hok lớp nào? Mik hok lớp 6a1~
x3 -16.x = 0
<=>x . ( x2 -16 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
Vậy phương trình có nghiệm { 0; 4 ; -4 }
a, \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left(3x+3\right)^2=0\Leftrightarrow\left(4x-3x-3\right)\left(4x+2x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(6x+3\right)=0\Leftrightarrow x=-\frac{1}{2};x=3\)
b, \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow x=-2;x=\frac{1}{3}\)
c, \(5x^3-20x=0\Leftrightarrow5x\left(x^2-4\right)=0\)
\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow x=0;x=\pm2\)
1: Ta có: \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{7}{3}\end{matrix}\right.\)
2: Ta có: \(\left(5x-4\right)^2-49x^2=0\)
\(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)
\(\Leftrightarrow\left(2x+4\right)\left(12x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3: Ta có: \(5x^3-20x=0\)
\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
\(A=\dfrac{75x\left(12+x\right)}{\left(12+4x\right)^2}\);\(A>0\forall x>0\)
Gọi \(A_0\in MGT\) của A
\(\Rightarrow A_0=\dfrac{75x\left(12+x\right)}{\left(12+4x\right)^2}\) có nghiệm
\(\Rightarrow A_0\left(12+4x\right)^2=75x\left(12+x\right)\)
\(\Leftrightarrow x^2\left(16A_0-75\right)+x\left(96A_0-900\right)+144A_0=0\) có nghiệm
\(\Leftrightarrow\Delta\ge0\Leftrightarrow-4A_0+25\ge0\)\(\Leftrightarrow A_0\le\dfrac{25}{4}\)
\(\Rightarrow maxA=\dfrac{25}{4}\)
a) \(x^3-16x=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
b) \(\left(x-1\right)\left(x+2\right)-x-2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
c) \(2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
tik
a) \(...\Rightarrow x\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)
b) \(...\Rightarrow x\left(x^3-2x^2+10x-20\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3-2x^2+10x-20=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(x-2\right)\left(x^2+10\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x^2+10=0\left(vô.lý\right)\end{matrix}\right.\Leftrightarrow x=2\)
Vậy \(x\in\left\{0;2\right\}\)
c) \(...\Rightarrow\left[{}\begin{matrix}2x-3=x+5\\2x-3=-x-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
d) \(...\Rightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-4x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a; \(x^3\) - 16\(x\) = 0
\(x\)(\(x^2\) - 16) = 0
\(\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x^2=\left(-4\right)^2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-4\\x=4\end{matrix}\right.\)
Vậy \(x\) \(\in\) {0; -4; 4}