Tìm SNT p biết p^2+6vàp^2-7 là SNT nhanh gou
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì là tổng của 2 số nguyên tố ra số nguyên tố nên tổng phải là số lẻ
Mà lẻ + lẻ = chẳn nên phải có 1 số chẳn
Vậy 1 số là 2
Số còn lại sẽ là số bé nhất có thể
Nếu là 3 thì hiệu sẽ không phải là số nguyên tố
Vậy là số 5
Suy ra 2 SNT đó là 2 và 5
Nếu là số 3 thì
, p+2, p+4 nguyên tố?
*nếu p = 3 => p+2 = 5, p+4 = 7 là 3 số nguyên tố
*p # 3:
nếu p chia 3 dư 1 => p+2 chia hết cho 3 : ko là số nguyên tố
nếu p chia 3 dư 2 => p+4 chia hết cho 3 : ko là số nguyên tố
Vậy chỉ có số nguyên tố p duy nhất thỏa là p = 3
TK nhé
Nếu p= 2 thì 5p+7=17 (số ng tố) (tman)
NẾu p>2 thì ta có các dạng p=2k+1
Ta có p=2k+1 thì 5p+7=5x(2k+1)+7=10k+12 (hợp số) (loại)
Vậy p=2
Nếu p = 2 ⇒ p+ 2 = 4 ( loại)
Nếu p = 3 ⇒ p + 2 = 2 + 3 = 5 ( thỏa mãn)
p + 10 = 3 + 10 = 13 ( thỏa mãn)
Nếu p > 3 ⇒ p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k+ 1 ⇒ p +2 = 3k + 1 + 2 = 3k + 3 ⋮ 3 (loại)
Nếu p = 3k + 2 ⇒ p + 10 = 3k + 2 + 10 = 3k + 12 ⋮ 3 (loại)
Vậy p = 3 là số nguyên tố duy nhất thỏa mãn yêu cầu đề bài
Bài 4:
Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ
hay P-1 và P+1 là các số chẵn
\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)
Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)
Thay P=3k+1 vào (P-1)(P+1), ta được:
\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)
Thay P=3k+2 vào (P-1)(P+1), ta được:
\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)
Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)
mà \(\left(P-1\right)\left(P+1\right)⋮8\)
và (3;8)=1
nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)
Xét \(p=2\) thì \(p^2+6=10\) là hợp số, không thỏa mãn
Xét \(p=3\) thì \(p^2+6=15\) là hợp số, không thỏa mãn.
Xét \(p>3\) thì \(p^2-7>2\) và \(p^2-7⋮2\) nên là hợp số, không thỏa mãn.
Vậy không có số nguyên tố \(p\) nào thỏa mãn yêu cầu đề bài.