Cho khối lập phương ABCD.A'B'C'D' có cạnh dài 10cm, S là trọng tâm của hình vuông ABCD, S' là trọng tâm của hình vuông A'B'C'D' . SA' cắt S'A tại M, SB' cắt S'B tại N, SC' cắt S'C tại P, SD' cắt S'D tại Q. Thể tích của hình S.MNPQ.S' là bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Nhận thấy chóp ACD′B′ có tất cả các
cạnh bằng nhau và bằng 2 2 a
Gọi M là trung điểm của AC, G là
trọng tâm của tam giác AB′C′.
Chóp ACD′B′ nhận D′G là đường cao.
Xét tam giác AB′C′ có
Đáp án B
Gọi tâm O, O’ lần lượt là tâm của ABCD, A’B’C’D’. Ta có
Qua I ta kẻ đường thẳng d song song BD cắt BB', DD' lần lượt tại M, N . Mặt phẳng ( α ) chính là mặt phẳng (KMAN) chia khối lập phương thành 2 phần.
Ta có 2 phần khối đa diện đối xứng qua (AA'C'C) nên ta chỉ cần xét một nửa thể tích của mỗi phần như sau:
Đáp án B
Gọi tâm O, O’ lần lượt là tâm của ABCD, A’B’C’D’. Ta có I = A K ∩ O O '
Qua I ta kẻ đường thẳng d song song BD cắt BB', DD' lần lượt tại M, N . Mặt phẳng α chính là mặt phẳng (KMAN) chia khối lập phương thành 2 phần.
Ta có 2 phần khối đa diện đối xứng qua (AA'C'C) nên ta chỉ cần xét một nửa thể tích của mỗi phần như sau:
Ta có \(3AB^2=AC'^2=9a^2\) \(\Leftrightarrow AB^2=3a^2\Leftrightarrow AB=a\sqrt{3}\)
\(\Rightarrow V_{hlp}=AB^3=3a^3\sqrt{3}\) (đơn vị thể tích)
Ta có \(\dfrac{V_{S'.MNP}}{V_{S'.ABC}}=\dfrac{S'M}{S'A}.\dfrac{S'N}{S'B}.\dfrac{S'P}{S'C}=\dfrac{1}{2}.\dfrac{1}{2}.\dfrac{1}{2}=\dfrac{1}{8}\)
\(\Rightarrow V_{S.MNP}=\dfrac{1}{8}V_{S'.ABC}=\dfrac{1}{8}.\dfrac{1}{2}V_{S'.ABCD}=\dfrac{1}{8}.\dfrac{1}{2}.\dfrac{1}{3}V_{ABCD.A'B'C'D'}\)
\(=\dfrac{1}{48}V_{ABCD.A'B'C'D'}=\dfrac{1}{48}.10^3=\dfrac{125}{6}\left(cm^3\right)\)
\(\Rightarrow V_{S.MNPQ.S'}=4V_{S'.MNP}=4.\dfrac{125}{6}=\dfrac{250}{3}\left(cm^3\right)\)