K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2024

2\(^x\) + 2\(^x\)+3 = 72

2\(^x\) + 2\(^x\).23 = 72

2\(^x\).(1 + 23) = 72

2\(^x\).(1+ 8) = 72

2\(^x\).9 = 72

2\(^x\)    = 72 : 9

2\(^x\)   = 8

2\(^x\) = 23

  \(x=3\)

Vậy \(x=3\)

27 tháng 8 2019

\(\left(x^2+4x+3\right)\left(x^2+10x+24\right)=72\)

\(\Leftrightarrow x^4+10x^3+24x^2+4x^3+40x^2+96x+3x^2+30x+72=72\)

\(\Leftrightarrow x^4+14x^3+67x^2+126x+72=72\)

\(\Leftrightarrow x^4+14x^3+67x^2+126x=0\)

\(\Leftrightarrow x\left(x^3+14x^2+67x+126\right)=0\)

\(\Leftrightarrow x\left(x^2+7x+18\right)\left(x+7\right)=0\)

Vì \(x^2+7x+18>0\) nên:

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}\)

15 tháng 12 2023

x(x + 2)(x + 3)(x + 5) = 72

⇔ (x² + 5x)(x² + 5x + 6) - 72 = 0 (1)

Đặt u = x² + 5x

⇒ x² + 5x + 6 = u + 6

(1) ⇔ u.(u + 6) - 72 = 0

⇔ u² + 6u - 72 = 0

⇔ u² + 12u - 6u - 72 = 0

⇔ (u² + 12u) - (6u + 72) = 0

⇔ u(u + 12) - 6(u + 12) = 0

⇔ (u + 12)(u - 6) = 0

⇔ u + 12 = 0 hoặc u - 6 = 0

*) u + 12 = 0

⇔ u = -12

⇒ x² + 5x = -12

⇔ x² + 5x + 12 = 0

⇔ x² + 2.5x/2 + 25/4 + 23/4 = 0

⇔ (x + 5/2)² + 23/4 = 0 (vô lý)

*) u - 6 = 0

⇔ u = 6

⇒ x² + 5x = 6

⇔ x² + 5x - 6 = 0

⇔ x² - x + 6x - 6 = 0

⇔ (x² - x) + (6x - 6) = 0

⇔ x(x - 1) + 6(x - 1) = 0

⇔ (x - 1)(x + 6) = 0

⇔ x - 1 = 0 hoặc x + 6 = 0

**) x - 1 = 0

⇔ x = 1

**) x + 6 = 0

⇔ x = -6

Vậy S = {-6; 1}

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:

PT $\Leftrightarrow (4x+3)^2(2x^2+3x+1)=72$

$\Leftrightarrow (16x^2+24x+9)(2x^2+3x+1)=72$

Đặt $2x^2+3x+1=a$ thì pt trở thành:

$(8a+1)a=72$

$\Leftrightarrow 8a^2+a-72=0$

$\Leftrightarrow 16a^2+2a-144=0$

$\Leftrightarrow (4a+\frac{1}{4})^2=\frac{2305}{16}$

$\Rightarrow a=\frac{1\pm \sqrt{2305}}{16}$

$\Leftrightarrow 2x^2+3x+1=\frac{1\pm \sqrt{2305}}{6}$

Đến đây bạn giải pt bậc 2 bình thường. 
 

\(\sqrt{\dfrac{72x}{128}}=\dfrac{3}{4}\)

\(\Leftrightarrow x\cdot\dfrac{9}{16}=\dfrac{9}{16}\)

hay x=1

1 tháng 3 2019

Phương trình này không có nghiệm là x = 1 nha bạn

9 tháng 1 2020

\(\left(x-7\right)\left(x-5\right)\left(x-4\right)\left(x-2\right)=72\)

\(\Leftrightarrow\left(x-7\right)\left(x-2\right)\left(x-5\right)\left(x-4\right)-72=0\)

\(\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72=0\)

Đặt \(x^2-9x+17=t\)

\(\Rightarrow\left(t-3\right)\left(t+3\right)-72=0\)

\(\Leftrightarrow t^2-9-72=0\)\(\Leftrightarrow t^2-81=0\)

\(\Leftrightarrow\left(t-9\right)\left(t+9\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t-9=0\\t+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=9\\t=-9\end{cases}}\)

TH1: \(t=-9\)\(\Leftrightarrow x^2-9x+17=-9\)

\(\Leftrightarrow x^2-9x+26=0\)( vô nghiệm )

TH2: \(t=9\)\(\Leftrightarrow x^2-9x+17=9\)\(\Leftrightarrow x^2-9x+8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=8\end{cases}}\)

Vậy phương trình có tập nghiệm \(S=\left\{1;8\right\}\)

9 tháng 1 2020

ko vt lại đề

=> (x-7)(x-2)(x-5)(x-4)=72

=>(x2-9x+14)(x2-9x+20)=72 (*)

đặt x2-9x+17=k

(*)<=> (k-3)(k+3)=72

=>k2-9=72

=>k2-81=0

=>k= + hoặc - 9

xét k=9=>.....

xét k=-9=>.....

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

5 tháng 3 2021

( x - 2 )( x + 2 )( x2 - 10 ) = 72

<=> ( x2 - 4 )( x2 - 10 ) - 72 = 0

Đặt t = x2 - 4

pt <=> t( t - 6 ) - 72 = 0

<=> t2 - 6t - 72 = 0

<=> t2 - 12t + 6t - 72 = 0

<=> t( t - 12 ) + 6( t - 12 ) = 0

<=> ( t - 12 )( t + 6 ) = 0

<=> ( x2 - 4 - 12 )( x2 - 4 + 6 ) = 0

<=> ( x2 - 16 )( x2 + 2 ) = 0

<=> ( x - 4 )( x + 4 )( x2 + 2 ) = 0

Vì x2 + 2 ≥ 2 > 0 ∀ x

=> x - 4 = 0 hoặc x + 4 = 0

<=> x = 4 hoặc x = -4

Vậy ...

5 tháng 3 2021

(x - 2)(x + 2)(x2 - 10) = 72

<=> (x2 - 4)(x2 - 10) = 72

Đặt x2 - 7 = y

<=> (x2 - 7 + 3)(x2 - 7 - 3) = 72

<=> (y + 3)(y - 3) = 72

<=> y2 - 9 = 72

<=> y2 = 81

<=> y = \(\pm\)9

+) Với y = 9 thì x2 - 7 = y <=> x2 - 7 = 9 <=> x2 = 16 <=> x = \(\pm\)4

+) Với y = -9 thì x2 - 7 = y <=> x2 - 7 = -9 <=> x2 = -2

Vì x2 \(\ge\)0 mà -2 < 0 nên không tìm được x

Vậy x = \(\pm\)4

18 tháng 5 2019

Ta có 

\(\left(x-2\right)^2=\frac{7}{2}\Leftrightarrow x-2=\pm\sqrt{\frac{7}{2}}\)

\(\Leftrightarrow x=2\pm\frac{\sqrt{14}}{2}\)

Vậy phương trình có hai nghiệm là: \(x_1=2+\frac{\sqrt{14}}{2};x_2=2-\frac{\sqrt{14}}{2}\)