Cho stn a gồm 60 chữ số 1, stn b gồm 30 chữ số 2.CMR: a-b là số chính phương.(plsss)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a là stn gồm 13 chữ số 2, b là stn gồm 19 chữ số 1. CMR: ab-5 chia hết cho 3
Trl đúng trả 6 ticks
Ta có: \(a=222...2\)(13 chữ số)
\(\Rightarrow\) Tổng các chữ số của a là: \(2.13=26\) chia 3 dư 2
\(\Rightarrow a\equiv2\left(mod3\right)\left(1\right)\)
Ta có: \(b=111...1\)(19 chữ số 1)
=> Tổng các chữ số của b là: \(1.19=19\) chia 3 dư 1
\(\Rightarrow b\equiv1\left(mod3\right)\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow ab-5\equiv1.2-5\left(mod3\right)\)
\(\Rightarrow ab-5\equiv-3\left(mod3\right)\)
\(\Rightarrow ab-5⋮3\)
a=\(2^{13}=8192;b=1^{19}=1\)
áp dụng dấu hiệu chia hết cho 3
ta có: ab-5=\(8912\cdot1-5=8907\)
mà 8+9+0+7=24 ⋮3
suy ra ab-5⋮3
1 tick đc r
có sai thì bỏ qua ạ
cho a là stn gồm 13 chữ số 2, b là stn gồm 19 chữ số 1. CMR: ab-5 chia hết cho 3
Trl đúng trả 6 ticks
cho a là stn gồm 13 chữ số 2, b là stn gồm 13 chữ số 1. CMR: ab-5 chia hết cho 3
Trl đúng trả 6 ticks
a=222...2(13 cs 2) suy ra tổng các cs của a là 2x13=26 suy ra a đồng dư với 2(mod3)
b=111...1(13 cs 1) suy ra tổng các cs của b là 1x13=13 suy ra b đồng dư với 1(mod 3)
suy ra a.b đồng dư với 2x1=2(mod 3) suy ra a.b-5 đồng dư với 2-5=-3 đồng dư với 0(mod 3) suy ra đpcm
m tự làm đấy bạn(sử dụng đồng dư thức)
cho a là stn gồm 13 chữ số 2, b là stn gồm 13 chữ số 1. CMR: ab-5 chia hết cho 3
Trl đúng trả 6 ticks
Sai đề. VD: Với n=2=>A=1111(2.2=4 chữ số 1), B=444(2+1=3 chư số 4)
Khi đó: A+B+1=1111+444+1=1556
Mà 1556 ko phải là số chính phương.
Bạn xem lại đề nha
Gọi \(a=111...11\) (60 chữ số 1)
\(a=\dfrac{1}{9}.999...99\) (60 chữ số 9)
\(a=\dfrac{10^{60}-1}{9}\)
Gọi \(b=222...22\) (30 chữ số 2)
\(b=\dfrac{2}{9}.999...99\) (30 chữ số 9)
\(b=\dfrac{2\left(10^{30}-1\right)}{9}=\dfrac{2.10^{30}-2}{9}\)
Khi đó \(a-b=\dfrac{10^{60}-1}{9}-\dfrac{2.10^{30}-2}{9}\)
\(=\dfrac{\left(10^{30}\right)^2-2.10^{30}+1}{9}\)
\(=\dfrac{\left(10^{30}-1\right)^2}{9}\)
\(=\left(\dfrac{10^{30}-1}{3}\right)^2\)
Hiển nhiên \(10^{30}-1=999...99\) (30 chữ số 9) chia hết cho 3 nên \(\dfrac{10^{30}-1}{3}\) là số tự nhiên \(\Rightarrow\left(\dfrac{10^{30}-1}{3}\right)^2\) là số chính phương hay \(a-b\) là số chính phương. Ta có đpcm.