K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

2x3-x2y+3x2+2x-y=2

(2x3+2x)-(x2y+y)+(3x2+3)=5

2x(x2+1)-y(x2+1)+3(x2+1)=5

(x2+1)(2x-y+3)=5

Mà x2>=0 => x2+1>0

=> (x2+1)(2x-y+3)=5=1.5=5.1

•x2+1=1 và 2x-y+3=5 => x=0; y=-2

•x2+1=5 và 2x-y+3=1=> x=2;y=6 hoặc x=-2; y=-2

Vậy (x;y) là (0;-2);(2;6);(-2;-2)

30 tháng 7 2016

giup vsssssss mn

25 tháng 8 2018

bn ơi bn lm đc bài này ko giúp mik vs

tìm x;y trong phương trình nghiệm nguyên sau:

a)x^2+y^2-2.(3x-5y)=11                b)x^2+4y^2=21+6x

17 tháng 5 2024

\(\left(3x+2y\right)\left(2x-y\right)^2=7\left(x+y\right)-2\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7\left(x+y\right)+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7x-7y+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-\left(9x+6x\right)+\left(2x-y\right)+2=0\)

\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-3\left(3x+2y\right)+\left(2x-y\right)+2=0\)

Đặt \(3x+2y\) = a ,đặt \(2x-y\) = b, ta có:

\(ab^2-3a+b+2=0\)

\(\Leftrightarrow a\left(b^2-3\right)=-2-b\)

\(\Leftrightarrow a=\dfrac{-2-b}{b^2-3}\)

\(\Leftrightarrow a=\dfrac{b+2}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=\dfrac{4-b^2}{3-b^2}\)

\(\Leftrightarrow a\left(2-b\right)=\dfrac{3-b^2+1}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=1+\dfrac{1}{3-b^2}\\ \Leftrightarrow1⋮3-b^2\\ \Leftrightarrow b^2-3\in\left\{1;-1\right\}\\ \Leftrightarrow b^2\in\left\{4;2\right\}\\ \)

mà 2 không chính phương

\(\Rightarrow b\in\left\{2;-2\right\}\Rightarrow a=0\)

đến đây bạn tự giải tiếp

 

3 tháng 9 2020

Ta có phương trình :

\(x^2y+x^2=x^3-y+2x+7\)

\(\Leftrightarrow x^2y+y=x^3-x^2+2x+7\)

\(\Leftrightarrow y.\left(x^2+1\right)=x^3-x^2+2x+7\)

\(\Leftrightarrow y=\frac{x^3-x^2+2x+7}{x^2+1}\)

Do \(y\inℤ\rightarrow\frac{x^3-x^2+2x+7}{x^2+1}\inℤ\). Lại có \(x\inℤ\Rightarrow\hept{\begin{cases}x^3-x^2+2x+7\inℤ\\x^2+1\inℤ\end{cases}}\)

\(\Rightarrow x^3-x^2+2x+7⋮x^2+1\)

\(\Leftrightarrow x.\left(x^2+1\right)-\left(x^2+1\right)+x+8⋮x^2+1\)

\(\Leftrightarrow x+8⋮x^2+1\)

\(\Rightarrow\left(x+8\right)\left(x-8\right)⋮x^2+1\)

\(\Leftrightarrow x^2+1-65⋮x^2+1\)

\(\Leftrightarrow65⋮x^2+1\)\(\Leftrightarrow x^2+1\inƯ\left(65\right)\). Mà : \(x^2+1\ge1\forall x\)

\(\Rightarrow x^2+1\in\left\{1,5,13,65\right\}\)

\(\Leftrightarrow x^2\in\left\{0,4,12,64\right\}\)\(x^2\) là số chính phương với \(x\inℤ\)

\(\Rightarrow x^2\in\left\{0,4,64\right\}\Rightarrow x\in\left\{0,2,-2,8,-8\right\}\)

+) Với \(x=0\) thì \(y=7\) ( Thỏa mãn )

+) Với \(x=2\) thì \(y=3\) ( Thỏa mãn )

+) Với \(x=-2\) thì \(y=-\frac{9}{5}\) ( Loại )

+) Với \(x=8\) thì \(y=\frac{471}{65}\) ( Loại )

+) Với \(x=-8\) thì \(y=-9\) ( Thỏa mãn )

Vậy phương trình đã cho có nghiệm \(\left(x,y\right)\in\left\{\left(-8,-9\right);\left(0,7\right);\left(2,3\right)\right\}\)

22 tháng 1 2017

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

22 tháng 1 2017

giải zõ hộ

26 tháng 10 2017

\(x^2+2x=y^2+2y+7\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)=7\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=7\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+2\right)=7\)

Đến đây bạn lập bảng ước của 7 rồi tự làm nha

26 tháng 10 2017

x^2-y^2-2x+2y

=(x^2-y^2)-(2X-2Y)

=(x+y)(x-y)-2(x-y)

=(x-y)(x+y-2)

1 tháng 11 2020

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

1 tháng 11 2020

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)