Tìm STN n bết trong ba số 6;16;n bất cứ số nào cũng là ước của tích 2 số còn lại
GIÚP MÌNH VỚI !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PS chi so vai ngày 3 bán : 1 - (1/6 + 2/3) = 1/6
Vải bán 3 ngày : 105 x 6 = ..... m
tổng của STN và ST2 là : 8,5 x 2 = 17
tổng của ST2 và ST3 là : 8,1 x 2 = 16,2
tổng của STN và ST3 là : 7,35 x 2 = 14,7
tổng của 3 số là : ( 17 + 16,2 + 14,7 ) : 2 = 23,95
STN là : 23,95 - 16,2 = 7,75
ST2 là : 23,95 - 14,7 = 9,25
ST3 là ; 23,95 - 17 = 6,95
vì 9,25 lớn hơn 7,75 và 6,95 nên số thứ 2 là số lớn nhất
Tổng STN và STH : 8,5 x 2 = 17
Tổng STH và STB : 8,1 x 2 = 16,2
Tổng STN và STB : 7,35 x 2 = 14,7
Số thứ hai hơn số thứ ba :
17 - 14,7 = 2,3
Số thứ hai hơn só thứ thứ nhất :
16.2 -14.7 = 1,5
Số thứ hai lơn nhất và có giá trị là :
(17 + 1,5) : 2 = 9.25
a)
\(A=5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\)
\(5^2.A=5^2.\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)\)
\(25A=5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\)
\(A+25A=\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)+\left(5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\right)\)
\(26A=5^{22}-1\)
\(A=\dfrac{5^{22}-1}{26}\).
b)
\(26A+1=5^n\)
\(\Leftrightarrow\left(5^{52}-1\right)+1=5^n\)
\(\Leftrightarrow5^{52}=5^n\)
\(\Rightarrow n=52\).
c)
\(A=\left(5^{50}-5^{48}\right)+\left(5^{46}-5^{44}\right)+...+\left(5^6-5^4\right)+\left(5^2-1\right)\)
\(=5^{48}.\left(5^2-1\right)+5^{44}.\left(5^2-1\right)+...+5^4.\left(5^2-1\right)+1.\left(5^2-1\right)\)
\(=5^2.24.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=25.4.6.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=100.6.\left(5^{46}+5^{42}+...+5^2\right)+24⋮100\)
\(\Rightarrow A⋮100\).
gọi số cần tìm là \(\overline{ab}\) theo đề bài
\(\overline{ab}=6\left(a+b\right)\)
\(10xa+b=6xa+6xb\)
\(4xa=5xb⋮5\Rightarrow4xa⋮5\Rightarrow a=5\)
\(\Rightarrow4x5=5xb\Rightarrow b=4\)
Số cần tìm là 54=6x(5+4)
Số n có 1 trong 3 dạng : 5k ; 5k+1 ; 5k+2 với k thuộc N
Nếu n=5k thì n=5 khi đó n+2=7 ; n+6=11 đều là số nguyên tố , thỏa mãn
Nếu n=5k+1 thì n+2 =5k+3 chia hết cho 3 và lớn hơn 3 nên là hợp số , k thỏa mãn
Nếu n=5k+2 thì n+6 =5k+8 chia hết cho 2 và lớn hơn 2 nên là hợp số , k thỏa mãn
Vậy n=5