K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2024

\(\left(11^{2024}+11^{2023}\right):11^{2023}\\ =11^{2024}:11^{2023}+11^{2023}:11^{2023}\\ =11+1\\ =12\)

câu hỏi này không trả lời được nha

24 tháng 12 2023

Em nên viết bằng công thức toán học em nhé, như vậy sẽ giúp mọi người hiểu đề đúng và hỗ trợ tốt nhất cho em!

31 tháng 10 2023

\(A=7^{2024}-7^{2023}+7^{2022}-7^{2021}+...+7^2-7\)

=>\(7A=7^{2025}-7^{2024}+7^{2023}-7^{2022}+...+7^3-7^2\)

=>\(7A+A=7^{2025}-7^{2024}+7^{2023}-7^{2022}+...+7^3-7^2+7^{2024}-7^{2023}+...+7^2-7\)

=>\(8A=7^{2025}-7\)

=>\(A=\dfrac{7^{2025}-7}{8}\)

31 tháng 10 2023

sossososo

:)))

31 tháng 10 2023

Ta có \(B=5^{2024}+5^{2023}+5^{2022}\)

\(B=5^{2022}\left(5^2+5+1\right)\)

\(B=31.5^{2022}⋮31\)

Vậy \(B⋮31\) (đpcm)

8 tháng 1 2024

\(\left(2x+4\right)^{2024}+\left(\left|3y-9\right|\right)^{2023}=0\) (*) 

Ta có: \(\left(2x+4\right)^{2024}\ge0\forall x\) (vì có số mũ chẵn) (1)

\(\left(\left|3y-9\right|\right)^{2023}\ge0\forall y\) (vì giá trị tuyệt đối luôn ≥0) (2) 

Từ (1) và (2) ta có: 

\(\Rightarrow\left\{{}\begin{matrix}2x+4=0\\3y-9=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)

Vậy: ... 

tại sao 3y-9=0 mà y lại = 3

 

29 tháng 3 2023

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)

29 tháng 3 2023

giup mik nhiều quá hihi

\(2023A=\dfrac{2023^{31}+4046}{2023^{31}+2}=1+\dfrac{4044}{2023^{31}+2}\)

\(2023B=\dfrac{2023^{32}+4046}{2023^{32}+2}=1+\dfrac{4044}{2023^{32}+2}\)

mà 2023^31+2<2023^32+2

nên A>B

16 tháng 7 2023

Tính

C. \(\left(6^{2023}-6^{2023}\right):6^{2021}\)

\(=6^{2023}:6^{2021}-6^{2023}:6^{2021}\)

\(=6^2-6^2\)

\(=36-36\)

\(=0\)

16 tháng 7 2023

C = (62023 - 62023): 62021

C = 0: 62021

C = 0

6 tháng 1 2024

\(3B=1.3^2+2.3^3+3.3^4+...+2022.3^{2023}+2023.3^{2024}\)

\(2B=3B-B=-3-3^2-3^3-...-3^{2023}+2023.3^{2024}\)

\(2B=2023.3^{2024}-\left(3+3^2+3^3+...+3^{2023}\right)\)

Đặt 

\(C=3+3^2+3^3+...+3^{2023}\)

\(3C=3^2+3^3+3^4+...+3^{2024}\)

\(2C=3C-C=3^{2024}-3\Rightarrow C=\dfrac{3^{2024}-3}{2}\)

\(\Rightarrow2B=2023.3^{2024}-\dfrac{3^{2024}-3}{2}=\)

\(=\dfrac{2.2023.3^{2024}-3^{2024}+3}{2}=\dfrac{4045.3^{2024}+3}{2}\)

\(\Rightarrow B=\dfrac{4045.3^{2024}+3}{4}\)

10 tháng 11 2023

a) \(A=2+2^2+...+2^{2024}\)

\(2A=2^2+2^3+...+2^{2025}\)

\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)

\(A=2^{2025}-2\) 

b) \(2A+4=2n\)

\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)

\(\Rightarrow2^{2026}-4+4=2n\)

\(\Rightarrow2n=2^{2026}\)

\(\Rightarrow n=2^{2026}:2\)

\(\Rightarrow n=2^{2025}\) 

c) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)

d) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)

\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)

\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)

Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7

⇒ A : 7 dư 2 

10 tháng 11 2023

cái câu d nó cứ sao sao ý bn

hiu