K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2024

   \(x^2\) - 7\(x\) - 8

= (\(x^2\) + \(x\)) - 8\(x\) - 8

\(x\).(\(x\) + 1) - 8.(\(x\) + 1)

= (\(x+1\)).(\(x-8\))

8 tháng 11 2024

x²-7x-8

x²-8x+x-8

x(x-8)+(x-8)

(x-8)(x+1)

25 tháng 6 2018

x8 + x4 + 1

= x8 + 2x4 + 1 - x4

= [(x4)2 + 2x4 + 1] - x4

= (x4 + 1)2 - (x2)2

= ( x4 - x2 + 1 ) ( x4 + x2 + 1 )

25 tháng 6 2018

x8+x+1

=(x8−x2)+(x2+x+1)

=x2(x6−1)+(x2+x+1)

=x2(x2+1)(x3−1)+(x2+x+1)

=x2(x3+1)(x−1)(x2+x+1)+(x2+x+1)

=(x2+x+1)[x2(x3+1)(x−1)+1]

=(x2+x+1)[x2(x4−x3+x−1)+1]

=(x2+x+1)(x6−x5+x3−x2+1)

12 tháng 8 2018

\(x^8+x^4+1\)

\(=x^4.\left(x^4+1\right)+\left(x^4+1\right)-x^4\)

\(=\left(x^4+1\right).\left(x^4+1\right)-\left(x^2\right)^2\)

\(=\left(x^4+1\right)^2-\left(x^2\right)^2\)

\(=\left(x^4+1-x^2\right).\left(x^4+1+x^2\right)\)

4 tháng 8 2015

=yz(x^2+5x-14)

=yz(x^2-2x+7x-14)

=yz[x(x-2)+7(x-2)

=yz(x-2)(x+7)

12 tháng 8 2018

      \(x^8+x^7+1\)

\(=x^8-x^2+x^7-x+x^2+x+1\)

\(=x^2\left(x^6-1\right)+x\left(x^6-1\right)+x^2+x+1\)

\(=\left(x^2+x\right)\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x\right)\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x\right)\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^5+x^4+x^2+x\right)\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^6-x^4+x^3-x\right)\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^6-x^4+x^3-x+1\right)\left(x^2+x+1\right)\)

Chúc bạn học tốt.

16 tháng 8 2018

Bài này trên mạng cũng có mà.

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$

$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$

$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$

$=(x^2+x+1)(x^5-x^4+x^3-x+1)$

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

c.

$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$

$=(x^4+1)^2-(x^2)^2$

$=(x^4+1-x^2)(x^4+1+x^2)$

$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$

$=(x^4-x^2+1)[(x^2+1)^2-x^2]$

$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$

d.

$x^3-5x+8-4=x^3-5x+4$

$=x^3-x^2+x^2-x-(4x-4)$

$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$

e.

$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$

$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$

$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$

$=(x^2+x+1)[(x-1)(x^2+x)+1]$

$=(x^2+x+1)(x^3-x+1)$

 

 

23 tháng 11 2017

x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)

k mk nha

23 tháng 11 2017

bạn ơi bạn chưa bớt 2x^2 kìa

23 tháng 11 2017

x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1

=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)

=(x3-x-1)(x2-x+1)

23 tháng 11 2017

x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)

k mk nha

25 tháng 5 2023

x⁸ + x⁴ + 1

= x⁸ + 2x⁴ + 1 - x⁴

= (x⁴ + 1)² - x⁴

= (x⁴ + 1)² - (x²)²

= (x⁴ + 1 + x²)(x⁴ + 1 - x²)

= (x⁴ + x² + 1)(x⁴ - x² + 1)