Phan tich da thuc da thuc sau ra thua so : P(x) = x5 - 8x +21x3 - 34x2 + 8x -96
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= (x^5-2x^4)-(6x^4-12x^3)+(9x^3-18x^2)-(16x^2-32x)+(48x-96)
= (x-2).(x^4-6x^3+9x^2-16x+48)
= (x-2). [ (x^4-3x^3)-(3x^3-9x^2)-(16x-48) ]
= (x-2).(x-3).(x^3-3x^2-16)
= (x-2).(x-3).[ (x^3-4x^2)+(x^2-16) ]
= (x-2).(x-3).(x-4).(x^2+x+4)
k mk nha
(x2 + 2.x.3 + 32 - 1).(x2 + 2.x.4 + 16 - 1) - 24
=[(x+3)2 - 1]. [(x+4)2-1] -24
=(x+3+1)(x+3-1)(x+4+1)(x+4-1) - 24
=(x+4)(x+2)(x+5)(x-3) - 24
(x2+6x+8)(x2+8x+15)-24
<=>(x2+4x+2x+8)(x2+5x+3x+15)-24
<=> [x(x+4)+2(x+4)][x(x+5)+3(x+5)]-24
<=> (x+4)(x+2)(x+5)(x+3)-24
<=> (x+4)(x+3)(x+2)(x+5)-24
<=>(x2+7x+12)(x2+7x+10)
đặt t=x2+7x+11 ta có:
(t-1)(t+1)-24
<=> t2-1-24
<=>t2-25
<=>(t-5)(t+5)
thay t=x2+7x+11 vào ta có:
(x2+7x+11-5)(x2+7x+11+5)
<=>(x2+7x+6)(x2+7x+16)
\(a^4-6a^3+27a^2-54a+32\)
\(=\left(a^4-a^3\right)-\left(5a^3-5a^2\right)+\left(22a^2-22a\right)-\left(32a-32\right)\)
\(=\left(a-1\right)\left(a^3-5a^2+22a-32\right)\)
\(a,x^2+6x+9\)
\(=\left(x+3\right)^2\)
\(b,10x-25-x^2\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x-5\right)^2\)
\(c,8x^3-\frac{1}{8}\)
\(=8x^3-\left(\frac{1}{2}\right)^3\)
\(=\left(8x-\frac{1}{2}\right)\left(64x^2+4x+\frac{1}{4}\right)\)
\(d,8x^3+12x^2+6xy^2+y^3\)
\(=2\left(4x^3+6x^2+3xy^2+\frac{1}{2}y^3\right)\)
hok tốt!