cmr nếu \(xy+yz+xz=\) \(5\) thì \(3x^2+3y^2+z^2\ge10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM cho các số thực dương ta có:
$2x^2+\frac{z^2}{2}\geq 2xz$
$2y^2+\frac{z^2}{2}\geq 2yz$
$x^2+y^2\geq 2xy$
Cộng theo vế và thu gọn suy ra:
$3x^2+3y^2+z^2\geq 2(xy+yz+xz)=10$
(đpcm)
Dấu "=" xảy ra khi \(2x=2y=z=2\)
a/ \(\left(a^2-b^2\right)\left(c^2-d^2\right)=a^2c^2-a^2d^2-b^2c^2+b^2d^2\)
\(=\left(a^2c^2+2abcd+b^2d^2\right)-\left(a^2d^2+2abcd+b^2c^2\right)\)
\(=\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
b/ \(x^2+y^2+z^2=xy+yz+zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2zx\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=z\)
Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)
\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)
Thiết lập tương tự và cộng lại:
\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)
\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)
Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)
\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)
Dấu "=" xảy ra khi \(x=y=z\)
BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)
a: Ta có: \(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
\(=a^2c^2+b^2d^2+2abcd-a^2d^2-b^2c^2-2abcd\)
\(=a^2\left(c^2-d^2\right)-b^2\left(c^2-d^2\right)\)
\(=\left(a^2-b^2\right)\left(c^2-d^2\right)\)
Bạn có làm đc câu b ko, nếu đc thì làm nốt giùm mink nha
Điểm rơi : \(\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
\(A=3x^2+3y^2+z^2\)
\(2A=6x^2+6y^2+2z^2\)
\(2A=\left(z^2+4x^2\right)+\left(z^2+4y^2\right)+\left(2x^2+2y^2\right)\)
Áp dụng bất đẳng thức Cô-si:
\(2A\ge2\sqrt{4x^2z^2}+2\sqrt{4y^2z^2}+2\sqrt{4x^2y^2}\)
\(=4xz+4yz+4xy=4\left(xy+yz+xz\right)=20\)
\(\Rightarrow2A\ge20\)
\(\Rightarrow A\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
Le Tran Anh này, bạn biết làm không mà bảo ng khác ngu? Nếu biết thì giải đi...
Để chứng minh bất đẳng thức trên, ta sẽ sử dụng phương pháp giả sử ngược (Proof by Contradiction). Giả sử bất đẳng thức trên không đúng, tức là: (5x^3 - y^3)/(3x^2 + xy + 5y^3) + (5y^3 - z^3)/(3y^2 + yz + 5z^3) + (5z^3 - x^3)/(3z^2 + xz + 5x^3) > x + y + z Ta có thể viết lại bất đẳng thức trên thành: (5x^3 - y ^3)/(3x^2 + xy + 5y^3) - x + (5y^3 - z^3)/(3y^2 + yz + 5z^3) - y + (5z^3 - x^3 )/(3z^2 + xz + 5x^3) - z > 0 Tiếp theo, ta nhận thấy rằng với mọi a, b > 0, ta luôn có: (a^3 - b^3)/(a^2 + ab + b^2) - a > 0 and (a^3 - b^3)/(a^2 + ab + b^2) - b > 0. Vì vậy, áp dụng bất đẳng thức trên từng phần thức trong tổng, ta có: (5x^3 - y^3)/(3x^2 + xy + 5y^3) - x > 0 (5y ^3 - z^3)/(3y^2 + yz + 5z ^3) - y > 0 (5z^3 - x^3)/(3z^2 + xz + 5x^3) - z > 0 Khi đặt a = x^3, b = y^3, c = z^3, ta có: (5a - b)/(3a^2 + ab + 5b) - a^(1/3) > 0 (5b - c)/(3b^2 + bc + 5c) - b^(1/3) > 0 (5c - a)/(3c^2 + ac + 5a) - c^(1/3) > 0 Nói cách khác, ta có các bất đẳng thức sau: (5a - b)/(3a^2 + ab + 5b) > a^(1/3) (5b - c)/(3b^2 + bc + 5c) > b^(1/3) ( 5c - a)/(3c^2 + ac + 5a) > c^( 1/3) Áp dụng bất đẳng thức AM-GM, ta có: 3a^2 + ab + 5b ≥ 3∛(15a^2b) 3b^2 + bc + 5c ≥ 3∛(15b^2c) 3c^2 + ac + 5a ≥ 3∛(15c^2a) Khi đặt A = 3a^2 + ab + 5b, B = 3b^2 + bc + 5c, C = 3c^2 + ac + 5a, ta có: A > a ^ (1/3) B > b^(1/3) C > c^(1/3) Từ đó, ta có: (A + B + C) > (a^(1/3) + b^(1/3) + c^(1/3)) Nhưng A, B, C lần lượt tương ứng với các số mẫu trong bất đẳng thức ban đầu, ta thu được: (5a - b)/(3a^2 + ab + 5b) + (5b - c)/(3b^2 + bc + 5c) + (5c - a)/(3c^ 2 + ac + 5a) > (a^(1/3) + b^(1/3) + c^(1/3)) Tuy nhiên, điều này trái với giả định ban đầu.
Ta có
\(3x^2+3y^2+z^2=\left(2x^2+\frac{z^2}{2}\right)+\left(2y^2+\frac{z^2}{2}\right)+\left(x^2+y^2\right)\ge2\left(xz+yz+xy\right)=2\cdot5=10\left(dpcm\right)\)