Chứng minh rằng \(a=\frac{3\sqrt{6}-\sqrt{2}}{2\sqrt{2}-\sqrt{3}}\) là 1 số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi n nguyên dương ta có:
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)
Với k nguyên dương thì
\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)
\(=\sqrt{k+1}-\sqrt{k-1}\)(*)
Đặt A = vế trái. Áp dụng (*) ta có:
\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)
\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)
...
\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)
Cộng tất cả lại
\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)
3.
Theo bất đẳng thức cô si ta có:
\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)
Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)
Câu trên đề sai
\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}=\sqrt{2}\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{6}+\sqrt{2}}=1\)
Vậy nó là số nguyên
Trả lời
\(\frac{3\sqrt{2}+2\sqrt{2}}{\sqrt{3}+\sqrt{2}}+\frac{\sqrt{6}+6}{\sqrt{6}+1}\)
\(=\frac{\sqrt{2}.\left(3+2\right)}{\sqrt{3}+\sqrt{2}}+\frac{6+\sqrt{6}}{\sqrt{6}+1}\)
\(=\frac{5\sqrt{2}}{\sqrt{3}+\sqrt{2}}+\frac{\sqrt{6}.\left(\sqrt{6}+1\right)}{\sqrt{6}+1}\)
\(=\frac{5\sqrt{2}.\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right).\left(\sqrt{3}-\sqrt{2}\right)}+\sqrt{6}\)
\(=\frac{5\sqrt{6}-5.2}{3-2}+\sqrt{6}\)
\(=\frac{5\sqrt{6}-10}{1}+\sqrt{6}\)
\(=5\sqrt{6}-10+\sqrt{6}\)
\(=6\sqrt{6}-10\)
x02 = 8 - ( \(2\sqrt{2+\sqrt{3}}\)+ \(2\sqrt{6-3\sqrt{3}}\)) (1)
Ta có ( \(2\sqrt{2+\sqrt{3}}\)+ \(2\sqrt{6-3\sqrt{3}}\))2 = 32
Do đó x02 = 8 - \(\sqrt{32}\)(2)
PT <=> (x2 - 8)2 - 32 = 0 (3)
Thế (2) vào (3) thì đúng
Vậy x0 là nghiệm của PT
Trả lời:
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+4\sqrt{3}+1}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)
\(A=\frac{\sqrt{2}.\sqrt{2}.\sqrt{2+\sqrt{3}}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=\frac{\sqrt{2}.\left(\sqrt{3}+1\right)}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)
\(A=1\)
Ta có:
\(\frac{1}{n\sqrt{\left(n+1\right)}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{\left(n+1\right)}\right)}\)
\(=\frac{1}{\sqrt{n\left(n+1\right)}}.\left(\sqrt{n+1}-\sqrt{n}\right)=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vào ta được
\(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+...+\frac{1}{99\sqrt{100}+100\sqrt{99}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=1-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)