Tìm x
a\ \(\left(x-7\right)^{x+1}-\left(x+7\right)^{x+11}=0\)
b\ \(\left(x-1\right)^2=\frac{36}{49}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,(x-7)x+1-(x-7)x+11=0
=>(x-7)x+1.[1-(x-7)10]=0
=>(x-7)x+1=0
=>x-7=0
=>x=7
hoặc 1-(x-7)10=1
=>(x-7)10=1
=>x-7=-1;1
=>x=8;6
vậy x=6;7;8
b,(x-1)2=36/49
=>x-1=6/7;-6/7
=>x=13/7;1/7
vậy x=1/7;13/7
cách 1:=> (x - 7)^(x+1)= (x-7)^(x+11)
TH1: x-7=0 => x=7 => 0^8=0^18 (TM)
TH2: x-7=1 => x=8 (TM)
TH3: x khác 7 và 8 => x+1=x+11 => vô lý => loại
KL: x = 7 hoặc x=8
( x-7)^( x+1) - ( x-7)^(x+11) = 0
( x-7)^( x+1) - ( x-7)^(x+1)*x^10 = 0
( x-7)^( x+1) (1-x^10) = 0
tới đây dễ òi
a,\(\left(x-\frac{7}{9}\right)^3=\left(\left(\frac{2}{3}\right)^2\right)^3\)
\(x-\frac{7}{9}=\frac{4}{9}\)
\(x=\frac{4}{9}+\frac{7}{9}\)
\(x=\frac{11}{9}\)
Vậy x=\(\frac{11}{9}\)
a)
\(\begin{array}{l}x:{\left( {\frac{{ - 1}}{2}} \right)^3} = - \frac{1}{2}\\x = - \frac{1}{2}.{\left( {\frac{{ - 1}}{2}} \right)^3}\\x = {\left( {\frac{{ - 1}}{2}} \right)^4}\\x = \frac{1}{{16}}\end{array}\)
Vậy \(x = \frac{1}{{16}}\).
b)
\(\begin{array}{l}x.{\left( {\frac{3}{5}} \right)^7} = {\left( {\frac{3}{5}} \right)^9}\\x = {\left( {\frac{3}{5}} \right)^9}:{\left( {\frac{3}{5}} \right)^7}\\x = {\left( {\frac{3}{5}} \right)^2}\\x = \frac{9}{{25}}\end{array}\)
Vậy \(x = \frac{9}{{25}}\).
c)
\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^{11}}:x = {\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^{11}}:{\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^2}\\x = \frac{4}{9}.\end{array}\)
Vậy \(x = \frac{4}{9}\).
d)
\(\begin{array}{l}x.{\left( {0,25} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x.{\left( {\frac{1}{4}} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x = {\left( {\frac{1}{4}} \right)^8}:{\left( {\frac{1}{4}} \right)^6}\\x = {\left( {\frac{1}{4}} \right)^2}\\x = \frac{1}{{16}}\end{array}\)
Vậy \(x = \frac{1}{{16}}\).
a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{18}\)
⇒ x + 1 = 18
⇒ x = 17
Vậy x = 17
b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
⇒ \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)
⇒ \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(1-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=1-\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=\frac{1}{148}\)
⇒ x + 3 = 148
⇒ x = 145
Vậy x = 145
a. \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\left|-\frac{16}{5}+\frac{2}{5}\right|-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\left|-\frac{14}{5}\right|-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\frac{14}{5}-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{5}{3}\end{cases}.}\)
Vậy \(x\in\left\{-\frac{5}{3};\frac{7}{3}\right\}.\)
b. \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)\(\Leftrightarrow\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}\times\left(x-7\right)^{10}=0\)\(\Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\Leftrightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}.}\)Xét 2 trường hợp:
- \(\left(x-7\right)^{x+1}=0\)\(\Leftrightarrow x-7=0\Leftrightarrow x=7.\)
- \(1-\left(x-7\right)^{10}=0\Leftrightarrow\left(x-7\right)^{10}=1\Leftrightarrow\left(x-7\right)^{10}=\left(\pm1\right)^{10}\)\(\Leftrightarrow\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=6\end{cases}.}}\)
Vậy \(x\in\left\{6;7;8\right\}.\)
a,(x-7)x+1-(x-7)x+11=0
=>(x-7)x+1.[1-(x-7)10]=0
=>(x-7)x+1=0
=>x-7=0
=>x=7
hoặc 1-(x-7)10=1
=>(x-7)10=1
=>x-7=-1;1
=>x=8;6
vậy x=6;7;8
b,(x-1)2=36/49
=>x-1=6/7;-6/7
=>x=13/7;1/7
vậy x=1/7;13/7