2+2^2+2^3+.....+2^10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Q=(2^9.3+2^9.5):2^12
Đặt A=2^9.3+2^9.5
A=2^9.(3+5)
A=2^9.8
Mặt khác:8=2^3
=>A=2^9.2^3
A=2^12
Theo đề bài ta có Q=(2^9.3+2^9.5):2^12
=>Q=2^12:2^12
Q=1
Nhìn dài dòng thế thôi chứ đơn giản lắm.Nếu thấy đúng thì cho mình nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xin lỗi nhé mình mới học lớp 6 ko biết hnhieeuf về bài lớp 7 lên mình chỉ làm được mỗi câu a thôi, nhớ tích cho mk nhé
a)
A= \(5^2+10^2+15^2+...+2015^2\)
\(A=\left(5.1\right)^2+\left(5.2\right)^2+\left(5.3\right)^2+...+\left(5.403\right)^2\)
\(A=5^2.1^2+5^2.2^2+5^2.3^2+...+5^2.403^2\)
\(A=5^2.\left(1^2+2^2+3^2+...+403^2\right)\)
\(A=25.\left[1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+403.\left(404-1\right)\right]\)
\(A=25.\left[\left(1.2+2.3+3.4+...+403.404\right)-\left(1+2+3+...+403\right)\right]\)
Gọi :\(B=1.2+2.3+3.4+...+403.404\)
\(3B=1.2.3+2.3.3+3.4.3+...+403.404.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+403.404.\left(405-402\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+403.404.405-402.403.404\)
\(=403.404.405\)
\(=65938860\)
Gọi \(C=1+2+3+...+403\) (403 số hạng)
\(=\frac{\left(403+1\right).403}{2}\)
\(=\frac{162812}{2}\)
\(=81406\)
Suy ra \(A=25.\left(B-C\right)\)
\(=25.\left(65938860-81406\right)\)
\(=25.65857454\)
\(=1646436350\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Viết đổi 10/10 cuối vô duyên quá! và dấu của các phân số có mẫu 10 phải là -.
Sửa đi, Linh làm cho.
Đặt biểu thức trên là `A`
Ta có :
\(A=2+2^2+2^3+...+2^{10}\)
\(2A=2^2+2^3+2^4+...+2^{11}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{11}\right)-\left(2+2^2+2^3+...+2^{10}\right)\)
\(A=2^{11}-2\)
Đặt \(A=2+2^2+2^3+.....+2^{10}\)
Khi đó:
\(2A=2^2+2^3+2^4+.....+2^{11}\\ \Rightarrow2A-A=\left(2^2+2^3+2^4+.....+2^{11}\right)-\left(2+2^2+2^3+.....+2^{10}\right)\\ \Rightarrow A=2^2+2^3+2^4+.....+2^{11}-2-2^2-2^3-.....-2^{10}\\ \Rightarrow A=2^{11}-2\\ \Rightarrow A=2048-2\\ \Rightarrow A=2046\)
Vậy \(A=2046\)