Bài 6 (0,5 điểm) Chứng tỏ rằng: $A=1+4+4^2+4^3+...+4^{2\ 024}$ chia hết cho $21$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
Ví dụ: a = 6, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 9 không chia hết cho 6.
Ví dụ: a = 9, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 12 không chia hết cho 9.
Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 4.
Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 6.
Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 6.
Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 9.
Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 4.
😎 Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 6.
Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 9.
Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 6.
A = 1 + 4 + 42 + 43 + ... + 42023 + 42024
A = 40 + 41 + 42 + 43 + ... +42023 + 42024
Xét dãy số: 0; 1; 2; 3; ...; 2023; 2024
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Số hạng của dãy số trên là: (2024 - 0) : 1 + 1 = 2025 (số hạng)
Vậy A có 2024 hạng tử. Vì 2025 : 3 = 675
Nếu nhóm 3 hạng tử liên tiếp của A thành một nhóm, A sẽ là tổng của 675 khi đó ta có:
A = (1 + 4 + 42) + (43 + 44 + 45) +...+ (42022 + 42023 + 42024)
A = (1 + 4+ 42) + 43.( + 4 + 42) + ... + 42022.(1 + 4 + 42)
A = (1 + 4 + 42).(1 + 43 + ... + 42022)
A = 21.(1 + 43 + ... + 42022)
Vì 21 ⋮ 21 nên 21.(1 + 43 + ... + 42022) ⋮ 4
Hay A = 1 + 4 + 42 + 43 + ... + 42024 ⋮ 4 (đpcm)
\(A=1+4+4^2+...+4^{2022}+4^{2023}+4^{2024}\)
\(A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2022}+4^{2023}+4^{2024}\right)\)
\(A=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{2022}.\left(1+4+4^2\right)\)
\(A=21+4^3.21+...+4^{2022}.21\)
\(A=21.\left(1+4^3+...+4^{2022}\right)\)
Do 21 chia hết 21 nên A chia hết 21