K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

Theo dãy tỉ số (=) ta có :

        \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

=> a+ b = 2c ; b+c = 2a ; a+ c = 2b

P  =\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}+\frac{a+c}{c}=\frac{2c}{b}\cdot\frac{2a}{c}\cdot\frac{2b}{a}=\frac{8abc}{abc}=8\)

17 tháng 7 2015

bấm vào đây hoặc cái này

21 tháng 1 2018

a)        \(a+\frac{1}{a}=3\)

\(\Leftrightarrow\)\(\left(a+\frac{1}{a}\right)^2=9\)

\(\Leftrightarrow\)\(a^2+2+\frac{1}{a^2}=9\)

\(\Leftrightarrow\)\(a^2+\frac{1}{a^2}=7\)

  Ta có:      \(\left(a+\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}\right)=3.7\)

\(\Leftrightarrow\)\(a^3+\frac{1}{a}+a+\frac{1}{a^3}=21\)

\(\Leftrightarrow\)\(a^3+\frac{1}{a^3}=21-3=18\)

Ta lại có:    \(\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)=7.18\)

\(\Leftrightarrow\)\(a^5+\frac{1}{a}+a+\frac{1}{a^5}=126\)

\(\Leftrightarrow\)\(a^5+\frac{1}{a^5}=126-3=123\)

16 tháng 11 2015

ủng hộ mình nha 

i love you

5 tháng 8 2023

ok

2 tháng 1 2020

1. Câu hỏi của Nguyễn Thị Hồng Nhung - Toán lớp 7 - Học toán với OnlineMath

1) 

Ta có : 

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)

\(\Leftrightarrow\frac{1}{c}.\frac{2}{1}=\frac{\left(a+b\right)}{ab}\)

\(\Leftrightarrow\frac{2}{c}=\frac{\left(a+b\right)}{ab}\)

\(\Leftrightarrow2ab=ac+bc\)                (1)

Lại có :

 \(\frac{a}{b}=\frac{a-c}{c-b}\)

\(\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Leftrightarrow ac-ab=ab-bc\)

\(\Leftrightarrow2ab=ac+bc\)            (2)

Từ (1) và (2) :

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

24 tháng 7 2015

Super Man mà lại còn phải lên đây để hỏi bài à?

28 tháng 7 2016

Super man hỏi bài? Nghịch lý

18 tháng 12 2020

ok

 

31 tháng 8 2020

Bài làm:

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0

=> Hoặc a=-b hoặc b=-c hoặc c=-a

Ko mất tổng quát, g/s a=-b

a) Ta có: vì a=-b thay vào ta được:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)

=> đpcm

b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)

=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)

13 tháng 11 2016

ẹc mình lớp 7