a) 13+23
b) 13+23+33
c) 13+23+33+43
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)
13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)
13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp
Bài 2:
1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)
100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)
1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)
107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)
11 + 112 + 113 = \(\overline{..1}\)+ \(\overline{..1}\)+ \(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)
\(A=\frac{7}{3\times13}+\frac{7}{13\times23}+...+\frac{7}{53\times63}\)
\(A=\frac{7}{10}.\left[\left(\frac{1}{3}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{23}\right)+....+\left(\frac{1}{53}-\frac{1}{63}\right)\right]\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+....+\frac{1}{53}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\frac{20}{63}\)
\(A=\frac{2}{9}\)
A=7*(1/3*13+1/13*23+1/23*33+1/33*43+1/43*53+1/53*63)
A=7/10(1/3-1/13+1/13-1/23+1/23-1/33+1/33-1/43+1/43-1/53+1/53-1/63)
A=7/10*(1/3-1/63)
A=7/10*20/63
A=2/9
\(\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-81^2\right)\\ =\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left[3^8-\left(3^4\right)^2\right]\\ =\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-3^8\right)\\ =\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right).0=0\)
\(\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-81^2\right)=\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-3^8\right)=\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right).0=0\)
a, 1 + 2 + 3 + 4 3 = 100; 1 3 + 2 3 + 3 3 + 4 3 = 100 nên 1 + 2 + 3 + 4 3 = 1 3 + 2 3 + 3 3 + 4 3
Vậy 1 + 2 + 3 + 4 3 = 1 3 + 2 3 + 3 3 + 4 3
b, 16.18.20.22 = (19 – 3)(19 – 1)(19 + 1)(19 + 3)
= (19 – 3)(19+3)(19 – 1)(19 + 1)
= ( 19 2 – 9)( 19 2 – 1)
= 19 4 - 9 . 19 2 - 19 2 + 9
= 19 4 - 10 . 19 2 + 9 < 19 4
Vậy 16.18.20.22 < 19 4
Ta có
A = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 + 7 3 + 8 3 + 9 3 + 10 3 = ( 1 3 + 10 3 ) + ( 2 3 + 9 3 ) + ( 3 3 + 8 3 ) + ( 4 3 + 7 3 ) + ( 5 3 + 6 3 ) = 11 ( 1 2 – 10 + 10 2 ) + 11 ( 2 2 – 2 . 9 + 9 2 ) + … + 11 ( 5 2 – 5 . 6 + 6 2 )
Vì mỗi số hạng trong tổng đều chia hết cho 11 nên A ⁝ 11.
Lại có
A = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 + 7 3 + 8 3 + 9 3 + 10 3 = ( 1 3 + 9 3 ) + ( 2 3 + 8 3 ) + ( 3 3 + 7 3 ) + ( 4 3 + 6 3 ) + ( 5 3 + 10 3 ) = 10 ( 1 2 – 9 + 9 2 ) + 10 ( 2 2 – 2 . 8 + 8 2 ) + … + 5 3 + 10 3
Vì mỗi số hạng trong tổng đều chia hết cho 5 nên A ⁝ 5.
Vậy A chia hết cho cả 5 và 11
Đáp án cần chọn là: C
\(\frac{\frac{6}{13}-\frac{6}{23}+\frac{6}{33}-\frac{6}{43}}{\frac{5}{13}-\frac{5}{23}+\frac{5}{33}-\frac{5}{43}}\)
= \(\frac{6.\left(\frac{1}{13}-\frac{1}{23}+\frac{1}{33}-\frac{1}{43}\right)}{5.\left(\frac{1}{13}-\frac{1}{23}+\frac{1}{33}-\frac{1}{43}\right)}\)
= \(\frac{6}{5}\)
k cho mình nhé
e,13 + 23 + 33 + 43 + 53
Áp dụng công thức: 13 + 23 + 33 +...+ n3 = \(\left(\dfrac{n\left(n+1\right)}{2}\right)^2\)
ta có: 13 + 23 + 33 + 43 + 53 = \(\left(\dfrac{5.\left(1+5\right)}{2}\right)^2\) = 152 = 225
=
`a, 1^3 +2^3 = 1 + 8 = 9`
`b, 1^3 + 2^3 + 3^3 = 1 + 8 + 27 = 9 + 27= 36`
`c, 1^3 + 2^3 + 3^3 + 4^3 = 1 + 8 + 27 + 64 = 100`