có bao nhiêu số có 2 chữ số trong đó có mặt chữ số 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn 2 số lẻ từ 5 chữ số lẻ: \(C_5^2\)
Chọn 3 chữ số chẵn từ 5 chữ số chẵn: \(C_5^3\)
Xếp 8 chữ số theo thứ tự bất kì: \(C_5^2.C_5^3.\dfrac{8!}{2!.2!.2!}\)
Chọn 3 chữ số chẵn từ 5 chữ số chẵn trong đó có mặt số 0: \(C_4^2\)
Xếp 8 chữ số (có mặt số 0) sao cho số 0 đứng đầu: \(C_5^2C_4^2.\dfrac{7!}{2!.2!}\)
Số số thỏa mãn: \(C_5^2C_5^2\dfrac{8!}{2!.2!.2!}-C_5^2C_4^2.\dfrac{7!}{2!.2!}=...\)
Đưa các chữ số của số tự nhiên cần lập vào các ô trống:
. | . | . | . | . | . | . | . |
TH1: Có chữ số 0:
Đưa 0 vào : \(C^2_7\) cách
Chọn và đưa 2 số chẵn còn lại vào : \(C^2_4C^2_6C^2_4\) cách
Chọn 2 chữ số lẻ : \(A^2_5\) cách
=>TH1 lập được \(C^2_7C^2_4C^2_6C^2_4A^2_5=226800\) số
TH2: Không có chữ số 0:
Chọn và đưa 3 số chẵn vào : \(C^3_4C^2_8C^2_6C^2_4\) cách
Chọn 2 chữ số lẻ : \(A^2_5\) cách
=>TH2 lập được \(C^3_4C^2_8C^2_6C^2_4A^2_5=201600\) số
Vậy có 226800 + 201600 = 428400 số
![](https://rs.olm.vn/images/avt/0.png?1311)
Xếp số vào 9 ô trống thỏa yêu cầu đề bài:
Bước 1: Chọn 2 ô trong 8 ô (bỏ ô đầu tiên) để xếp hai chữ số 0, có cách chọn.
Bước 2: Chọn 3 ô trong 7 ô còn lại để xếp ba chữ số 2, có cách.
Bước 3: Chọn 2 ô trống trong 4 ô còn lại để xếp 2 chữ số 3, có cách chọn.
Bước 4: Hai ô còn lại xếp 2 chữ số còn lại, có 2! Cách xếp.
Theo quy tắc nhân có:
số thỏa yêu cầu bài toán.
Chọn B.
![](https://rs.olm.vn/images/avt/0.png?1311)
em hong thấy chữ với hình như cũng 0 đúng đề á :))
TH1: chữ số 0 có mặt 2 lần:
Có \(\dfrac{7!}{2!.2!.3!}-\dfrac{6!}{2!.3!}=150\) số
TH2: số 1 có mặt 2 lần:
Có \(\dfrac{7!}{2!.2!.3!}=210\) số
TH3: số 0 và số 1 mỗi số có mặt 1 lần:
\(\dfrac{7!}{1!.1!.2!.3!}-\dfrac{6!}{1!.2!.3!}=360\) số
Tổng cộng: \(150+210+360=720\) số
![](https://rs.olm.vn/images/avt/0.png?1311)
số cách chọn 3: 5C2 cách
chọn 3 số còn lại 8A3 cách
loại trường hợp a= 0:
số cách chọn 3: 4C2 cách
chọn 2 số còn lại: 7A2 cách
=> 5C2.8A3 - 4C2.7A2 = 3108 cách
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\overline{abcde}\).
- TH1 : a là số chẵn ⇒ Giả sử b,c là số chẵn và d,e là số lẻ
+ Chọn số cho a có 4 cách (2 ; 4 ; 6 ; 8) : Lưu ý là chữ số đầu tiên của số có từ 2 chữ số trở nên không được là số 0
+ Chọn số cho b có 3 cách
+ Chọn số cho c có 2 cách
+ Chọn số cho d có 5 cách
+ Chọn số cho e có 4 cách
⇒ Nếu a là số chẵn thì sẽ có 4 . 3 . 2 . 5 . 4 = 480 số
- Nếu a là số lẻ, giả sử b là số lẻ và c,d,e là số chẵn
+ Chọn số cho a có 5 cách
+ Chọn số cho b có 4 cách
+ Chọn số cho c có 5 cách
+ Chọn số cho d có 4 cách
Chọn số cho e có 3 cách
Vậy khi a là số lẻ thì có 5 . 4 . 5 . 4 . 3 = 1200 (số)
Vậy rốt cuộc là có 1200 + 480 = 1680 (số)
Liệt kê: 12;20;21;22;23;24;25;26;27;28;29;32;42;52;62;72;82;92.
=> 18 số thỏa mãn ycbt
cảm ơn bn