K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

\(\Leftrightarrow x^4+x^3-x\left(x^2-4x+4\right)+x-1=0\)

\(\Leftrightarrow x^4+x^3-x^3+4x^2-4x+x-1=0\)

\(\Leftrightarrow x^4+4x^2-3x-1=0\)

tự phân tích tiếp đẽ ý mà!

27 tháng 12 2019

11 tháng 9 2019

a) x = 1; x = - 1 3                 b) x = 2.

c) x = 3; x = -2.                 d) x = -3; x = 0; x = 2.

27 tháng 8 2021

a,x(2x-1)-(x-1)^2-x^2=0

<=>x(2x-1-x)-(x-1)^2=0

<=>x(x-1)-(x-1)^2=0

<=>(x-x+1)(x-1)=0

<=>x-1=0

<=>x=1

b,(x+2)^3-x^3-6x^2=4

<=>x^3+6x^2+12x+8-x^3-6x^2=4

<=>12x+8=4

<=>x=-1/3

tick mik nha

27 tháng 8 2021

`a)x(2x-1)-(x-1)^2-x^2=0`

`<=>2x^2-x-x^2+2x-1-x^2=0`

`<=>x-1=0`

`<=>x=1`

Vậy `x=1.`

`b)(x+2)^3-x^3-6x^2=4`

`<=>x^3+6x^2+12x+8-x^3-6x^2=4`

`<=>12x+8=4`

`<=>12x=-4`

`<=>x=-1/3`

Vậy `x=-1/3.`

26 tháng 4 2023

a) \(x^3-16x=0\)

 ⇔\(x\left(x^2-16\right)=0\)

 ⇒\(x=0\) hoặc \(x^2-16=0\)

\(TH_1:x=0\)

\(TH_2:x^2-16=0\) ⇔ \(x^2=16\) ⇔ \(x=\pm4\)

             Vậy \(x\in\left\{0;\pm4\right\}\)

b) \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)

⇒ \(2x+1=x-1\)

⇒ \(2x+2=x\)

⇒ \(2\left(x+1\right)=x\) ⇒ x = -2 

        Vậy x = -2

28 tháng 10 2021

\(a,\Leftrightarrow\left(x+3\right)\left(x+3-2x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-12x+36\right)=0\\ \Leftrightarrow x\left(x-6\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

28 tháng 10 2021

a, (x+3)2 - ( 2x + 1 ).( x+3)=0              b,     x3-12x2+36x =0

=> (x+3).(x+3-2x-1)                             => x(x2-12x+36) = 0

=>(x+3).(-x+2)                                     => x(x-6)2 = 0

=> x+3=0  <=> x=-3                            => x=0        <=> x=0

     -x+2=0 <=> x=-2                                 x-6= 0    <=> x=6

25 tháng 8 2019

a) x = -1.                      b) x = 4 hoặc x = 5.

c) x = ± 2 .                  d) x = 1 hoặc x = 2.

1 tháng 11 2021

a) \(\Rightarrow x\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)

7 tháng 11 2024

vậy giỏi zữ vậy

16 tháng 11 2023

1. a) \(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=14x^5+21x^7\)

b) \(\left(x^3-x^2+x-1\right):\left(x-1\right)=\dfrac{x^3-x^2+x-1}{x-1}\)

\(=\dfrac{x^2\left(x-1\right)+\left(x-1\right)}{x-1}=\dfrac{\left(x-1\right)\left(x^2+1\right)}{x-1}=x^2+1\)

16 tháng 11 2023

2: \(x^2-8x+7=0\)

=>\(x^2-x-7x+7=0\)

=>\(x\left(x-1\right)-7\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x-7\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)

1:

a: \(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=21x^7+14x^5\)

b: \(\dfrac{x^3-x^2+x-1}{x-1}=\dfrac{x^2\left(x-1\right)+\left(x-1\right)}{\left(x-1\right)}\)

\(=x^2+1\)

5 tháng 1 2021

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ