K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

12 tháng 7 2017

Chứng minh rằng (9^2n+1994^93)chia heets cho 5

13 tháng 7 2017

a) \(x\cdot\frac{1}{2}+x\cdot\frac{1}{4}+x\cdot\frac{1}{8}=\frac{21}{24}\)

\(x\cdot\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right)=\frac{7}{8}\)

\(x\cdot\frac{7}{8}=\frac{7}{8}\)

\(\Rightarrow x=\frac{7}{8}\div\frac{7}{8}=1\)

b) \(\left(x+4\right)+\left(x+9\right)+\left(x+14\right)+.....+\left(x+44\right)+\left(x+49\right)=1430\)

\(\left(x+x+x+....+x+x\right)+\left(4+9+14+...+44+49\right)=1430\)

\(10x+265=1430\)

\(10x=1430-265\)

\(10x=1165\)

\(\Rightarrow x=\frac{1165}{10}=116,5\)

c) \(x\cdot0,25-0,5=1\)

\(x\cdot0,25=1+0,5\)

\(x\cdot0,25=1,5\)

\(\Rightarrow x=1,5\div0,25=6\)

20 tháng 5 2018

a)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\Leftrightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)

Do đó \(x\in\left\{0;1;2\right\}\)

25 tháng 7 2018

b)

\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot...\cdot\frac{31}{64}=2^x\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{4\cdot6\cdot8\cdot...\cdot64}=2^x\Leftrightarrow\frac{31!}{\left(2\cdot2\right)\cdot\left(2\cdot3\right)\cdot\left(2\cdot4\right)\cdot...\cdot\left(2\cdot31\right)\cdot64}=2^x\)

\(\frac{31!}{2^{30}\cdot31!\cdot2^6}=2^x\Leftrightarrow\frac{1}{2^{36}}=2^x\Leftrightarrow2^{-36}=2^x\Rightarrow x=-36\)

25 tháng 8 2018

Bài 1 : Thực hiện phép tính :

a, \(\frac{4}{5}+1\frac{1}{6}\cdot\frac{3}{4}\)

\(\frac{4}{5}+\frac{7}{6}\cdot\frac{3}{4}\)

\(\frac{4}{5}+\frac{7}{8}\)

\(\frac{32+35}{40}=\frac{67}{40}\)

b, \(\frac{2}{3}:\left(\frac{3}{4}\cdot\frac{4}{3}\right)+2\)

\(=\frac{2}{3}:1+2\)

\(=\frac{2}{3}+2=\frac{2+6}{3}=\frac{8}{3}\)

c, \(\frac{1}{2}\times\left(\frac{2}{3}+\frac{3}{5}\cdot\frac{5}{7}\right)+1\frac{1}{3}\)

\(=\frac{1}{2}\cdot\left(\frac{2}{3}+\frac{9}{35}\right)+\frac{4}{3}\)

\(=\frac{1}{2}\cdot\frac{97}{105}+\frac{4}{3}\)

\(=\frac{97}{210}+\frac{4}{3}=\frac{377}{210}\)

Bài 2 : Tìm \(x\inℤ\), biết :

a, \(\frac{2}{3}< \frac{x}{6}\le\frac{10}{3}\)

\(\Leftrightarrow\frac{4}{6}< \frac{x}{6}\le\frac{20}{6}\)

mà \(x\inℤ\Rightarrow\text{x}\in\) {\(5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20\)}

b, \(\frac{1}{3}+x=1\frac{1}{2}\)

\(\frac{1}{3}+x=\frac{3}{2}\)

\(x=\frac{3}{2}+\frac{\left(-1\right)}{3}\)

\(x=\frac{7}{6}\) (loại vì \(x\notinℤ\))

\(\Rightarrow x\in\varnothing\)

c, \(\frac{1}{7}+x=\frac{25}{14}+\frac{5}{14}\)

\(\frac{1}{7}+x=\frac{15}{7}\)

\(x=\frac{15}{7}+\frac{(-1)}{7}\)

\(x=\frac{14}{7}=2\).

13 tháng 9 2017

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(1-x\right)^2}{2}\)

\(A=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(1-x\right)^2}{2}\)

\(A=\left(\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(1-x\right)^2}{2}\)

\(A=\frac{2}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}.\frac{\left(1+\sqrt{x}\right)^2\left(\sqrt{x}-1\right)^2}{2}\)

\(A=\sqrt{x}-1\)

ý b,c dễ rồi nha

4 tháng 8 2018


\(a,\frac{2}{3}.\left(3-x\right)+\frac{1}{2}=\frac{3}{4}.\left(2.x+1\right) \)
     \(2-\frac{2}{3}x+\frac{1}{2}=\frac{3}{2}.\frac{3}{4}x+\frac{3}{4} \)
     \(\frac{2}{3}x+2-\frac{1}{2}=\frac{9}{8}x+\frac{3}{4}\)
      \(\frac{2}{3}x+\frac{3}{2}=\frac{9}{8}x+\frac{3}{4}\)
      \(\frac{3}{2}-\frac{3}{4}=\frac{9}{8}x-\frac{2}{3}x\)
       \(\frac{6}{4}-\frac{3}{4}=\frac{27}{24}x-\frac{16}{24}x\)
       \(\frac{11}{24}x=\frac{3}{4}\)
         \(x=\frac{3}{4}:\frac{11}{24}\)
         \(x=\frac{3}{4}.\frac{24}{11}\)
         \(x=\frac{18}{11}\)
\(Vậy x=\frac{18}{11}\)
\(b,\frac{5-x}{3}=\frac{2x+1}{5}\)
    \(\frac{\left(5-x\right).5}{15}=\frac{\left(2x+1\right).3}{15}\)
\(\Rightarrow\left(5-x\right).5=\left(2x+1\right).3\)
       \(25-5x=6x+3\)
       \(25-3=6x+5x\)
 \(\Rightarrow11x=22\)
 \(\Rightarrow x=22:11\)
  \(\Rightarrow x=2\)
\(Vậy x=2\)