lập phương của một tổng
khai triển đẳng thức
(1z-2xy)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
c: \(\left(-5x-y\right)^3=-125x^3-75x^2y-15xy^2-y^3\)
h: \(\left(3y-2x^2\right)^3=27y^3-54y^2x^2+36yx^4-8x^6\)
a) \(\left(2x+1\right)^3\)
\(=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\)
\(=8x^3+12x^2+6x+1\)
b) \(\left(x-3\right)^3\)
\(=x^3-3.x^2.3+3.x.3^2-3^3\)
\(=x^3-9x^2+27x-27\)
Bài 2:
a: \(x^3+15x^2+75x+125=\left(x+5\right)^3\)
b: \(1-15y+75y^2-125y^3=\left(1-5y\right)^3\)
c: \(8x^3+4x^2y+\dfrac{3}{2}xy^2+8y^3=\left(2x+2y\right)^3\)
\(a.\left(2xy-3\right)^2=4x^2y^2-12xy+9\)
\(b.\left(\dfrac{1}{2}x+\dfrac{1}{3}\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}x+\dfrac{1}{9}\)
\(A=\left(x^2-4y^2\right)\left(x^2-2xy+4y^2\right)\left(x^2+2xy+4y^2\right)\)
\(A=\left(x-2y\right)\left(x+2y\right)\left(x^2-2xy+4y^2\right)\left(x^2+2xy+4y^2\right)\)
\(A=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(A=\left[x^3-\left(2y\right)^3\right]\left[x^3+\left(2y\right)^3\right]\)
\(A=\left[x^3-8y^3\right]\left[x^3+8y^3\right]\)
\(A=x^6-64y^6\)
\(\sqrt{2+\sqrt{3}}=\sqrt{\frac{1}{4}+3+\sqrt{3}-\frac{5}{4}}\)
\(=\sqrt{\left(\frac{1}{2}+\sqrt{3}\right)^2-\frac{5}{4}}=\sqrt{\left(\frac{1}{2}+\sqrt{3}-\frac{\sqrt{5}}{2}\right)\left(\frac{1}{2}+\sqrt{3}+\frac{\sqrt{5}}{2}\right)}\)
còn đâu bạn tự làm nốt nhé!!
f(x) = (2x - 5)2 = 4x2 - 20x + 25.Tổng các hệ số của đa thức f(x) được triển khai là : 4 - 20 + 25 = 9
Có \(\left(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\right)^2\)
\(=\left(\sqrt{17-3\sqrt{32}}\right)^2+2\left(\sqrt{17-3\sqrt{32}}\right)\left(\sqrt{17+3\sqrt{32}}\right)\)\(+\left(\sqrt{17=3\sqrt{32}}\right)^2\)
\(=17-3\sqrt{32}+2\sqrt{\left(17-3\sqrt{32}\right)\left(17+3\sqrt{32}\right)}\)\(+17+3\sqrt{32}\)
\(=34+2\sqrt{17^2-9.32}\)
\(=34+2\sqrt{289-288}\)
\(=34+2\sqrt{1}=34+2=36\)
\(\Rightarrow\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(=\sqrt{36}=6\)
(Vì có \(\hept{\begin{cases}\sqrt{17-3\sqrt{32}}\ge0\\\sqrt{17+3\sqrt{32}}\ge0\end{cases}}\)nên \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\ge0\))
\(\left(2x-y^2\right)^3\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot y^2+3\cdot2x\cdot\left(y^2\right)^2-\left(y^2\right)^3\)
\(=8x^3-12x^2y^2+6xy^4-y^6\)
Bậc là 6
Ta có:
`(1z - 2xy)^3`
`= (z - 2xy)^3`
`= z^3 - 3 . z^2 . 2xy + 3 . z . (2xy)^2 - (2xy)^3`
`= z^3 - 6z^2xy + 12zx^2y^2 - 8x^3y^3`