Tìm GTLN của biểu thức: A = 2.( m + p ) +mp - m2 - p2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=6x-x^2+10\)
\(-A=x^2-6x+10\)
\(-A=\left(x^2-6x+9\right)+1\)
\(-A=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge1\Leftrightarrow A\le-1\)
Dấu "=" xảy ra khi : \(x-3=0\Leftrightarrow x=3\)
Vậy \(A_{Max}=-1\Leftrightarrow x=3\)
VÌ x +7 >,= 0 với mọi x
=> ( x+7) + 2018 > , = 2018 VỚI MỌI X
hay A >,= 2018 VỚI MỌI X
MAX = 2018 VỚI MỌI X
<=> x+ 7 = 0
=> x= -7
vậy max = 2018 <=> x= -7
a: Ta có: \(-x^2+4x+5\)
\(=-\left(x^2-4x-5\right)\)
\(=-\left(x^2-4x+4-9\right)\)
\(=-\left(x-2\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi x=2
b: Ta có: \(-x^2-7x+4\)
\(=-\left(x^2+7x-4\right)\)
\(=-\left(x^2+2\cdot x\cdot\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{65}{4}\right)\)
\(=-\left(x+\dfrac{7}{2}\right)^2+\dfrac{65}{4}\le\dfrac{65}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{7}{2}\)
Bấm nhầm nút gửi
\(A=2x+\sqrt{5-x^2}\)
\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)
Điều kiện
\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\sqrt{5}\le x\le\sqrt{5}\\A\ge2x\end{cases}}\)
\(\Rightarrow A\ge-2\sqrt{5}\) (1)
Bình phương 2 vế ta được
\(5x^2-4Ax+A^2-5=0\)
Để phương trình theo x có nghiệm thì
\(\Delta'=\left(2A\right)^2-4.\left(A^2-5\right).5\ge0\)
\(\Leftrightarrow100-16A^2\ge0\)
\(\Leftrightarrow A\le\frac{5}{2}\)(2)
Từ (1) và (2) \(\Rightarrow-2\sqrt{5}\le A\le\frac{5}{2}\)
\(A=2x+\sqrt{5-x^2}\)
\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)
Điều kiện
\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)
youtube.com/c/AnimeVietsubchannel