K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2024

`3n^2 + 2n`

`= 3/2n . 2n + 2n . 1`

`= (3/2n + 1) . 2n`

16 tháng 2 2021

Chụp ảnh hoặc sử dụng gõ công thức nhé bạn. Để vầy khó hiểu lắm

undefined

10 tháng 2 2021

a,\(lim\dfrac{n^2-2n}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)

b,\(lim\dfrac{n^2-2}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n^2}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)

c,\(lim\dfrac{1-2n}{5n+3n^2}=lim\dfrac{1-2n}{n\left(5+3n\right)}=lim\dfrac{\dfrac{1}{n}-2}{1\left(\dfrac{5}{n}+3\right)}=-\dfrac{2}{3}\)

d,\(lim\dfrac{1-2n^2}{5n+5}=lim\dfrac{\left(1-n\sqrt{2}\right)\left(1+n\sqrt{2}\right)}{5n+5}=lim\dfrac{\left(\dfrac{1}{n}-\sqrt{2}\right)\left(\dfrac{1}{n}+\sqrt{2}\right)}{5+\dfrac{5}{n}}=\dfrac{-2}{5}\)

 

12 tháng 2 2022

\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)

\(=lim\dfrac{\dfrac{2}{n}+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}=0\)

NV
12 tháng 2 2022

\(\lim\dfrac{-3n^3+1}{2n+5}=\lim\dfrac{-3n^2+\dfrac{1}{n}}{2+\dfrac{5}{n}}=\dfrac{-\infty}{2}=-\infty\)

\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)

15 tháng 10 2023

1:

\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^5\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^5}\right)}{n^3\left(1-\dfrac{2}{n^2}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}n^2\cdot3=+\infty\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{3n^6+3n^4-1}{3n-2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^6\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^6}\right)}{n\left(3-\dfrac{2}{n}\right)}=\lim\limits_{n\rightarrow\infty}n^5=+\infty\)

6 tháng 4 2018

theo mình nhớ thì đề bài có lũy thừa hay sao ý

6 tháng 4 2018

3n+2-2n+2 +3n-2n

=(3n+2+3n)+(-2n+2 -2n)

=3n.(32+1)-2n.(22+1)

=3n.10-2n.5

=3n.10-2n-1.10

=10.(3n-2n-1)chia hết cho 10

Vậy 3n+2-2n+2 +3n-2chia hết cho 10

13 tháng 10 2023

A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)

= 3ⁿ⁺¹.(1 + 3²) + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 3ⁿ⁺¹.10 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 3ⁿ⁺¹.5.2 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)

= 2.(3ⁿ⁺¹.5 + 2ⁿ⁺¹ + 2ⁿ⁺²) ⋮ 2   (1)

A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)

= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².(1 + 2)

= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².3

= 3.(3ⁿ + 3ⁿ⁺² + 2ⁿ⁺²) ⋮ 3   (2)

Từ (1) và (2) ⇒ A ⋮ 2 và A ⋮ 3

⇒ A ⋮ 6

13 tháng 10 2023

\(A=3^{n+1}+9.3^{n+1}+2^n.4+2^n.8\)

\(=3^{n+1}.10+4.2^n.3\)

\(=3^n.6.5+2^n.2.6⋮6\)

\(\Rightarrow A⋮6\left(đpcm\right)\)