Tìm số nguyên xy thỏa mãn
25-y2=8.(x-2009)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8\left|x-2017\right|=25-y^{2\text{}}\)
\(\Leftrightarrow8\left|x-2017\right|+y^2=25=25+0=24+1=21+4=16+9\)
Mà \(8\left|x-2017\right|\) chẵn nên ta có các trường hợp sau:
TH1: \(\left\{{}\begin{matrix}8\left|x-2017\right|=0\\y^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2017\\y=\pm5\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}8\left|x-2017\right|=24\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2020\\x=2014\end{matrix}\right.\\y=\pm5\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}8\left|x-2017\right|=16\\y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2019\\x=2015\end{matrix}\right.\\y=\pm3\end{matrix}\right.\)
\(x^2+y^2+2\left(x+y\right)-xy=0\)
\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)
\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)
Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm
\(x^2+y^2-2\left(x+y\right)=xy\)
\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)
a/ chuyển về (3-x).(y+3)=9 (dài dòng nên k làm đâu)
b/ xy+x+y=8
x.(y+1)+y+1=9
x.(y+1)+(y+1)=9
(x+1).(y+1)=9
c/(x,y)={(3;5),(4;4)}
\(8\left(x-2015\right)^2+y^2=25\)
=> 8(x-2015)2 nhỏ hơn hoặc bằng 25 ( vì y2 nhỏ hơn hoặc bằng 0)
=> (x-2015)2---------------------------- 25/8
=> x-2015 ={-1;0;1} (hơi tắt xíu mong bạn hiểu)
Ta có bảng:
x-2015 | -1 | 0 | 1 |
x | 2014 | 2015 | 2016 |
y | \(\sqrt{\frac{25}{8}}\)(loại) | 5;-5(thỏa mãn) | \(\sqrt{\frac{25}{8}}\)(loại) |
KL: Vậy có 2 cặp x,y thỏa mãn
Đáp án là:
x = 2010 hoặc 2008 và y = 3 hoặc -3.
x = 2012 hoặc 2006 và y = 1 hoặc -1.