K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 12 2022

IJ là đường trung bình của hình thang \(\Rightarrow\left\{{}\begin{matrix}IJ||AB\\IJ=\dfrac{AB+CD}{2}\end{matrix}\right.\)

Qua G kẻ đường thẳng song song AB lần lượt cắt SB, SA tại E và F

\(\Rightarrow\) Tứ giác IJEF là thiết diện của (GIJ) và chóp

\(EF||AB||IJ\Rightarrow IJEF\) là hình thang

Gọi M là trung điểm AB

Theo tính chất trọng tâm và định lý Talet:

\(\dfrac{EF}{AB}=\dfrac{SG}{SM}=\dfrac{2}{3}\)

Để IJEF là hình bình hành \(\Leftrightarrow IJ=EF\)

\(\Leftrightarrow\dfrac{2}{3}AB=\dfrac{AB+CD}{2}\Leftrightarrow\dfrac{1}{3}AB=CD\)

\(\Rightarrow AB=3CD\)

13 tháng 10 2021

 

Xét hình thang ADCB có

Q,P lần lượt là trung điểm của AB,DC

=>QP là đường trung bình của hình thang ADCB

=>QP//AD//BC và \(QP=\dfrac{AD+BC}{2}=\dfrac{\dfrac{BC}{2}+BC}{2}=\dfrac{3}{4}BC\)

Ta có: M là trung điểm của BC

=>\(BM=MC=\dfrac{BC}{2}\)

Ta có: N là trung điểm của MC

=>\(MN=NC=\dfrac{MC}{2}=\dfrac{BC}{4}\)

BM+MN=BN

=>\(BN=\dfrac{1}{4}BC+\dfrac{1}{2}BC=\dfrac{3}{4}BC\)

=>QP=BN

Ta có: QP//BN

QP=BN

Do đó: \(\overrightarrow{QP}=\overrightarrow{BN}\)

=>Điểm E trùng với điểm P

11 tháng 7 2021

undefined

a) Xét ΔBDC có 

K là trung điểm của BD(gt)

F là trung điểm của BC(gt)

Do đó: KF là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

Suy ra: KF//DC và \(KF=\dfrac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay KF//AB

2 tháng 2 2017