tính tổng
A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tách 100 thành 100 số 1
Ta có: TS=\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=100-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
=\(0+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)=MS
=> Phân số trên=1
Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)
\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)
\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)
\(\Rightarrow6A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)
Câu hỏi của Monkey D. Luffy - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
em tham khảo câu hỏi của Sáng Nguyễn nhé
Mình mới làm bài này hôm qua này:
Câu hỏi của Lê Thế Dũng - Học và thi online với HOC24
\(\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+...+100}\)
\(=3\times\left(\frac{1}{0+1}+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)
\(=3\times\left(\frac{1}{\left(0+1\right)\times2:2}+\frac{1}{\left(1+2\right)\times2:2}+\frac{1}{\left(1+3\right)\times3:2}+...+\frac{1}{\left(1+100\right)\times100:2}\right)\)
\(=3\times\left(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{100\times101}\right)\)
\(=3\times2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{100\times101}\right)\)
\(=6\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=6\times\left(1-\frac{1}{101}\right)\)
\(=6\times\frac{100}{101}\)
\(=\frac{600}{101}\)
Ủng hộ mk nha ^_-
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)(1)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)(2)
Lấy (2) trừ đi (1) ta có :
\(2A=1-\frac{1}{3^{100}}\)
\(\Rightarrow A=\frac{\left(1-\frac{1}{3^{100}}\right)}{2}\)