Tìm a để (a + 10) chia hết (a + 3)
Giúp mình giải bài này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì dấu hiệu chia hết cho 17 là :
Lấy các số đứng trước số ở hàng đơn vị trừ đi5 lần số hàng đơn vị, nếu hiệu đó chia hết cho 17 thì nó chia hết cho 17
VD: lấy số 153 nha bạn
15 - 3x5 = 0 chia hết cho 17 => 153 chia hết cho 17
Nên ta ưu tiên chọn số 2 vậy x = 2
Đs : 2
để 3y5 chia hết cho3 thì 3+y+5 chia hết cho 3 hay y+8 chia hết cho3 suy ra y={1;4;7}
để 6a4 chia hết cho 9 thì 6+a+4 chia hết cho 9 hay a+10 chia hết cho9 suy ra a={8}
a) n + 1 chia hết cho n - 3
=> n - 3+ 4 chia hết cho n - 3
=> 4 chia hết cho n-3
=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
thế n-3 vô từng trường hợp các ước của 4 rồi tim x
b) 2n + 5 chia hết cho n + 1
=> 2n + 2 + 3 chia hết cho n + 1
=> 2(n+1) + 3 chia hết cho n +1
=> 3 chia hết cho n + 1
=> n + 1 thuộc Ư(3) = {1;-1;3;-3}
tìm x giống bài a
c) 10n chia hết cho 5n - 3
=> 10n - 6 + 6 chia hết cho 5n - 3
=> 2.(5n - 3) + 6 chia hết cho 5n - 3
=> 6 chia hết cho 5n - 3
=> 5n - 3 thuộc Ư(6) = {1;-1;2;-2;3;-3;6;-6}
tìm x giống bài a
a. n+1=(n-3)+4
(n+1) chia hết cho (n-3) thì (n-3)+4 chia hết cho (n-3)
Ta có (n-3) chia hết cho (n-3)
Suy ra 4 phải chia hết cho (n-3)
Vậy n= -1 ,1 , 2 , 4
b. 2n+5=2n+2+3=2(n+1)+3
tương tự câu a ta có 2(n+1) chia hết cho (n+1)
Suy ra 3 phải chia hết cho (n+1)
Vậy n=-2,0,2
c.10n=10n-6+6=2(5n-3) +6
Tiếp tục àm tương tự như câu a và b
a; (n + 4) ⋮ (2n + 3)
2(n + 4) ⋮ (2n + 3)
(2n + 8) ⋮ (2n + 3)
(2n + 3 +5) ⋮ (2n + 3)
5 ⋮ (2n + 3)
(2n + 3) ϵ Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
2n +3 | -5 | -1 | 1 | 5 |
n | -4 | -2 | -1 | 1 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {-4; -2; -1; 1}
Vậy các giá trị nguyên cả n thỏa mãn đề bài lần lượt là:
n ϵ {-4; -2; -1; 1}
b; (2n + 4) ⋮ (3n -1)
3.(2n + 4) ⋮ (3n -1)
(6n + 12) ⋮ (3n - 1)
[2.(3n - 1) + 14] ⋮ (3n - 1)
14 ⋮ (3n - 1)
(3n - 1) ϵ Ư(14) = {-14; -7; -2; -1; 1; 2; 7; 14}
Lập bảng ta có:
3n - 1 | -14 | -7 | -2 | -1 | 1 | 2 | 7 | 14 |
n | - 13/3 | -2 | -1/3 | 0 | 2/3 | 1 | 8/3 | 5 |
n ϵ Z | ktm | tm | ktm | tm | ktm | tm | ktm | tm |
Theo bảng trên ta có: n ϵ {-2; 0; 1; 5}
Vậy các giá trị nguyên thỏa mãn đề bài là:
n ϵ {-2; 0; 1; 5}
Để số 4a1b chia hết cho 5 và chia 2 dư 1 thì so b=5
Ta có số 4a15 chia hết cho 3 thì số 4+a+1+5 chia chia hết cho 3 10+a chia hết cho 3 => a=2,5,8
Ta có số:4215 ,4515 hoặc sô 4815
Bài 1:
a) n+4 chia hết cho n-13
=> n-13+17 chia hết cho n-13
=> 17 chia hết cho n-13
=> n-13 \(\in\) Ư(17) = {1;-1;17;-17}
=> n \(\in\) {14;12;30;-4}
Vì n \(\in\) N nên n \(\in\) {14;20;30}
b) n-5 chia hết cho n-11
=> n-11+6 chia hết cho n-11
=> 6 chia hết cho n-11
=> n-11 \(\in\) Ư(6) = {1;-1;2;-2;3;-3;6;-6}
=> n \(\in\) {12;10;13;9;14;8;17;5}
Bài 2:
Để \(\overline{34x5}\) chia hết cho 9
=> 3+4+x+5 chia hết cho 9
=> 12+x chia hết cho 9
=> x = 7
Bài 1:
\(a=12+15+21+x=x+57\)
\(a⋮3\)
=>\(x+57⋮3\)
mà \(57⋮3\)
nên \(x⋮3\)
\(a⋮̸3\)
=>\(x+57⋮̸3\)
mà \(57⋮3\)
nên \(x⋮̸3\)
Bài 2:
\(A=75+1205+2008+x\)
=>\(A=x+3288\)
Để A chia hết cho 5 thì \(x+3288⋮5\)
mà \(3288\) chia 5 dư 3
nên x chia 3 dư 2
=>\(x=3k+2\left(k\in N\right)\)
mình nghĩ a = 4, bạn à ! Vì 4 + 10 = 14 và 4+ 3 = 7 nên 14 chia hết cho 7
(a + 10) \(⋮\)(a + 3)
=> (a + 3 + 7) \(⋮\)(a + 3)
=> 7 \(⋮\)a + 3
=> a + 3 \(\in\)Ư(7)
=> a + 3 \(\in\){1; 7}
=> a = 4
Vậy a = 4