Tìm x,y z
a, 8x = 5y = 12z và 3x + 2y - z = 720
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vi 8x = 5y , 7y = 12z
=>\(\left\{{}\begin{matrix}\dfrac{x}{5}=\dfrac{y}{8}\\\dfrac{y}{12}=\dfrac{z}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{x}{60}=\dfrac{y}{96}\\\dfrac{y}{96}=\dfrac{z}{56}\end{matrix}\right.\)
=> \(\dfrac{x}{60}=\dfrac{y}{96}=\dfrac{z}{56}\)
Ap dung tinh chat day ti so bang nhau co
\(\dfrac{x}{60}=\dfrac{y}{96}=\dfrac{z}{56}=\dfrac{x+y+z}{60+96+56}=\dfrac{-318}{212}=\dfrac{-3}{2}\)
\(\dfrac{x}{60}=\dfrac{-3}{2}\Rightarrow x=60.\dfrac{-3}{2}=-90\)
\(\dfrac{y}{96}=\dfrac{-3}{2}\Rightarrow y=96.\dfrac{-3}{2}=-144\)
\(\dfrac{z}{56}=\dfrac{-3}{2}\Rightarrow z=56.\dfrac{-3}{2}=-84\)
Vay x= -90, y= -144 va z=-84
c: =>|x-2009|=2009-x
=>x-2009<=0
=>x<=2009
d: =>2x-1=0 và y-2/5=0 và x+y-z=0
=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=9/10
a: 8x=5y; 7y=12z
=>x/5=y/8; y/12=z/7
=>x/15=y/24=z/14
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{15}=\dfrac{y}{24}=\dfrac{z}{14}=\dfrac{x+y+z}{15+24+14}=-\dfrac{318}{53}=-6\)
=>x=-90; y=-144; z=-84
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
Áp dụng bđt \(\frac{a}{b+c+d}\le\frac{1}{9}\left(\frac{a}{b}+\frac{a}{c}+\frac{a}{d}\right)\) ta có :
\(\frac{xy}{2x+y}\le\frac{1}{9}\left(\frac{xy}{x}+\frac{xy}{x}+\frac{xy}{y}\right)=\frac{1}{9}\left(2y+x\right)\)
\(\frac{3yz}{2y+z}\le3.\frac{1}{9}\left(\frac{yz}{y}+\frac{yz}{y}+\frac{yz}{z}\right)=\frac{1}{3}\left(2z+y\right)\)
\(\frac{6xz}{2z+x}\le6.\frac{1}{9}\left(\frac{xz}{z}+\frac{xz}{z}+\frac{xz}{x}\right)=\frac{2}{3}\left(2x+z\right)\)
\(\Rightarrow M\le\frac{1}{9}\left(2y+z\right)+\frac{1}{3}\left(2z+y\right)+\frac{2}{3}\left(2x+z\right)=\frac{13}{9}x+\frac{5}{9}y+\frac{12}{9}z\)
\(=\frac{1}{9}\left(13x+5y+12z\right)=\frac{1}{9}.9=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{10}\)
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
Ta có:
\(8x=5y=12z\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{24}=\dfrac{z}{10}\)
\(\Rightarrow\dfrac{3x}{45}=\dfrac{2y}{48}=\dfrac{z}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{15}=\dfrac{y}{24}=\dfrac{z}{10}=\dfrac{3x}{45}=\dfrac{2y}{48}=\dfrac{3x+2y-z}{45+48-10}=\dfrac{720}{83}\)
\(\rightarrow\dfrac{x}{15}=\dfrac{720}{83}\Rightarrow x=\dfrac{720}{83}\cdot15\Rightarrow x=\dfrac{10800}{83}\)
\(\rightarrow\dfrac{y}{24}=\dfrac{720}{83}\Rightarrow y=\dfrac{720}{83}\cdot24\Rightarrow y=\dfrac{17280}{83}\)
\(\rightarrow\dfrac{z}{10}=\dfrac{720}{83}\Rightarrow z=\dfrac{720}{83}\cdot10\Rightarrow z=\dfrac{7200}{83}\)
8x=5y=12z
=>\(\dfrac{8x}{120}=\dfrac{5y}{120}=\dfrac{12z}{120}\)
=>\(\dfrac{x}{15}=\dfrac{y}{24}=\dfrac{z}{10}=k\)
=>x=15k; y=24k; z=10k
3x+2y-z=720
=>\(3\cdot15k+2\cdot24k-10k=720\)
=>45k+48k-10k=720
=>83k=720
=>\(k=\dfrac{720}{83}\)
\(x=15\cdot\dfrac{720}{83}=\dfrac{1080}{83};y=24\cdot\dfrac{720}{83}=\dfrac{17280}{83};z=10\cdot\dfrac{720}{83}=\dfrac{7200}{83}\)