Tính độ dài nhỏ nhất của cạnh Huyền trong các tam giác vuông có chu vi = k không thay đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D E
dễ thấy tứ giác ADME là hình chữ nhật do có 3 góc vuông
nên chu vi ADME=2(AE+EM)
mà do ABC vuông cân nên góc ECM =45 độ nên MEC vuông cân tại E nên EM=EC
nên chu vi ADME=2(AE+EM)=2(AE+EC)=2AC là không đổi
b.DE=AM nhỏ nhaasrt khi M là hình chiếu của A lên BC
Đặt cạnh huyền của tam giác là x (\(x > 8\))
Theo giải thiết ta tính được cạnh góc vuông là \(x - 8\)
Áp dụng định lý Pitago ta tính được cạnh góc vuông còn lại là \(\sqrt {{x^2} - {{\left( {x - 8} \right)}^2}} = \sqrt {16x - 64} \)
Ta có chu vi của tam giác là \(x + \left( {x - 8} \right) + \sqrt {16x - 64} = 30\)
\(\begin{array}{l} \Leftrightarrow \sqrt {16x - 64} = 38 - 2x\\ \Rightarrow 16x - 64 = {\left( {38 - 2x} \right)^2}\\ \Rightarrow 16x - 64 = 1444 - 152x + 4{x^2}\\ \Rightarrow 4{x^2} - 168x + 1508 = 0\end{array}\)
\( \Rightarrow x = 13\) và \(x = 29\)
Thay \(x = 13\) và \(x = 29\) vào phương trình \(\sqrt {16x - 64} = 38 - 2x\) ta thấy chỉ có \(x = 13\) thảo mãn phương trình
Vậy cạnh huyền có độ dài là 13 cm.
Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 5k và 12k với k> 0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 13k, do đó
5k +12k + 13k = 30 => k = 1.
Từ đó độ dài cạnh huyền là 13 cm.
Bài 8: Vì em nhắn tin nhờ cô giảng bài 8 nên cô chỉ giảng bài 8 thôi nhé
Gọi các cạnh góc vuông, cạnh huyền của tam giác cần tìm lần lượt là: a; b; c
Theo bài ra ta có: a+b+c =36; \(\dfrac{a}{b}\) = \(\dfrac{3}{4}\)
\(\dfrac{a}{b}\) = \(\dfrac{3}{4}\) ⇒ \(\dfrac{a}{3}\) = \(\dfrac{b}{4}\) ⇒ \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{a^2+b^2}{9+16}\) (1)
Vì tam giác vuông nên ta theo pytago ta có: a2 + b2 = c2 (2)
Thay (2) vào (1) ta có: \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{c^2}{25}\)
⇒ \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) = \(\dfrac{a+b+c}{3+4+5}\) = \(\dfrac{36}{12}\) = 3
a = 3.3 = 9 (cm)
b = 3.4 = 12 (cm)
c = 3.5 = 15 (cm)
Kết luận: độ dài cạnh bé của góc vuông là: 9 cm
dộ dài cạnh lớn của góc vuông là 12 cm
độ dài cạnh huyền là 15 cm
Bài 9:
a,Gọi độ dài cạnh góc vuông là: a
Theo pytago ta có: a2 + a2 = 22 = 4 ⇒ 2a2 = 4 ⇒ a2 = 2 ⇒ a = \(\sqrt{2}\)
b, Gọi độ dài cạnh góc vuông là :b
Theo pytago ta có:
b2 + b2 = 102 =100 ⇒ 2b2 = 100 ⇒ b2 = 50⇒ b = 5\(\sqrt{2}\)
Bài 8 cô làm rồi nhé.
Bài 10 ; Gọi độ dài các cạnh góc của tam giác vuông lần lượt là:
a; b theo bài ra ta có:
\(\dfrac{a}{5}\) = \(\dfrac{b}{12}\) \(\Rightarrow\) \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{a^2+b^2}{25+144}\) (1)
Theo pytago ta có: a2 + b2 = 522 = 2704 (2)
Thay (2) vào (1) ta có: \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{2704}{169}\) = 16
⇒ a2 = 25.16 = (4.5)2 ⇒ a = 20
b2 = 144.16 = (12.4)2 ⇒ b = 48
Gọi độ dài 1 cạnh góc vuông là x (cm), x < 25
độ dài cạnh góc vuông còn lại là 60 - 25 - x = 35 - x (cm)
Theo đề bài ta có pt :
x + (35 - x ) = 25^2 (ĐL Pytago) <=> x^2 - 35x + 300 = 0
Δ = (−35)2 − 4.1.300 = 25
x = (35+5) : 2 = 20 ; x = 35 - 20 = 15
Vậy độ dài 2 góc vuông là 20cm và 15cm
Gọi độ dài 1 cạnh góc vuông là x (cm), x < 25
độ dài cạnh góc vuông còn lại là 60 - 25 - x = 35 - x (cm)
Theo đề bài ta có pt :
x2 + (35 - x2) = 25^2 (ĐL Pytago) <=> x^2 - 35x + 300 = 0
\(\Delta=\left(-35\right)^2-4.1.300=25\)
x1 = (35+5) : 2 = 20 ; x2 = 35 - 20 = 15
Vậy độ dài 2 góc vuông là 20cm và 15cm
Gọi b, c là độ dài các cạnh góc vuông, a là độ dài cạnh huyền (tính bằng cm) ( 0 < b; c < a)
+) Do các cạnh góc vuông tỉ lệ với 7 và 24 nên:
⇒ b = 7k, c = 24k.
Theo định lý Py-ta-go:
a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2
Nên a = 25k.
Theo đề bài, chu vi tam giác bằng 112 cm nên: a + b + c = 112 (cm).
Suy ra: 25k + 7k + 24k = 112
Hay 56k = 112
Từ đó ta tính được k = 2. Vậy a = 50cm.
tớ gợi ý nhé:
gọi hai cạnh góc vuông là a;b, cạnh huyền là c
đặt \(\dfrac{a}{8}\) = \(\dfrac{b}{15}\) vào k
=> a=....; b= .....
sau đó là áp dụng đl pi-ta-go( ghép hết vào với nhau),tính c
Thế là xong
Gọi \(c\) là cạnh huyền của tam giác vuông đó và \(a,b\) là 2 cạnh góc vuông. Khi đó: \(a+b+c=k\) và \(c^2=a^2+b^2\)
\(\Rightarrow c^2=\left(a+b\right)^2-2ab\ge\left(a+b\right)^2-2.\dfrac{\left(a+b\right)^2}{4}=\dfrac{\left(a+b\right)^2}{2}=\dfrac{\left(k-c\right)^2}{2}\)
\(\Leftrightarrow2c^2\ge k^2-2kc+c^2\)
\(\Leftrightarrow c^2+2kc-k^2\ge0\)
\(\Leftrightarrow\left(\dfrac{c}{k}\right)^2+2.\dfrac{c}{k}-1\ge0\)
\(\Leftrightarrow\dfrac{c}{k}\ge\sqrt{2}-1\) \(\Leftrightarrow c\ge\left(\sqrt{2}-1\right)k\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}c=\left(\sqrt{2}-1\right)k\\a=b=\dfrac{k-c}{2}=\dfrac{\left(2-\sqrt{2}\right)k}{2}\end{matrix}\right.\), thỏa mãn.
Vậy độ dài nhỏ nhất của cạnh huyền là \(\left(\sqrt{2}-1\right)k\)