Tìm n ϵ N để :
2n - 1 ⋮ n - 1
Giúp mình với giải thích cho mình với nha, c.on mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của A:
(2n - 1 - 1) : 2 + 1 = (2n - 2) : 2 + 1
= n - 1 + 1
= n
A = (2n - 1 + 1) . n : 2
= 2n . n : 2
= 2n² : 2
= n²
Vậy A là số chính phương (vì n ∈ ℕ)
A = 1 + 3 + 5 + ... + (2n - 1)
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là:
(2n - 1 - 1) : 2 + 1 = n
A = (2n - 1 + 1).n : 2
A = 2n.n : 2
A = n2
Vậy A là số chính phương ( đpcm vì A là bình phương của một số tự nhiên)
CM:(n-1)^2(n+1)+(n-1)(n+1) chia hết cho 6 với 1 số nguyên n. Mng giúp mình vs ạ. Mình c.on nhiều ạaa
\(\left(n-1\right)^2\left(n+1\right)+\left(n-1\right)\left(n+1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left[\left(n-1\right)+1\right]\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
Xét:
\(n\left(n-1\right)\) là hai số tự nhiên liên tiếp nên sẽ có số chẵn nên sẽ chia hết cho 2
\(n\left(n-1\right)\left(n+1\right)\) là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3
Mà: (2;3)=1 nên
\(n\left(n-1\right)\left(n+1\right)\) sẽ chia hết cho 2 x 3 = 6 (đpcm)
\(\left(n-1\right)^2\left(n+1\right)+\left(n-1\right)\left(n+1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\) là 3 số tự nhiên liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}\left(n-1\right)n\left(n+1\right)⋮2\\\left(n-1\right)n\left(n+1\right)⋮3\end{matrix}\right.\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮\left(2.3\right)\)
mà \(UCLN\left(2;3\right)=1\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮6\)
\(\Rightarrow dpcm\)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
Để \(2n-1⋮n-1\), ta có:
\(2n-1⋮n-1\\ \Rightarrow2n-2+1⋮n-1\\ \Rightarrow2\left(n-1\right)+1⋮n-1\)
Vì: \(2\left(n-1\right)⋮n-1\rightarrow1⋮n-1\rightarrow n-1\inƯ\left(1\right)=\left\{1\right\}\)
\(\Rightarrow n=2\)
Vậy: \(n=2\) thì \(2n-1⋮n-1\)